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Mach bands are phase dependent
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The prevailing explanation of Mach bands, the paradoxical bands
of light and dark seen where luminance gradients meet plateaux,
is that they are due to lateral inhibition in the visual system'™,
This explanation equates Mach bands with distortions in a pro-
cessed luminance distribution due to selective attenuation of low
frequency components. But square waveforms exhibit no Mach
bands***®, although they should also be distorted after processing.
Measurements of the contrast required to see Mach bands in
trapezoidal waveforms and manipulations of their spectra lead us
to conclude that phase relationships between Fourier components
are important to the structure we perceive. A model based on the
odd and even symmetry of visual receptive fields explains our
results.

Mach originally’ used rotating discs and drums to study the
bright and dark bands that appear where ramps of luminance
meet plateaux as, for example, at the borders of the penumbra
of a shadow. He later devised optical methods to cast shadows®.
For the studies reported here we used gratings formed by com-
puter on an oscilloscope which were variable in luminance
profile and contrast. Fig. 1 shows four trapezoids, including the
two extreme cases of a square wave (#=0) and the triangular

Fig. 1 a-d, Examples of four types of
trapezoids. The shape of the waveform is deter-
mined by the parameter f (the ratio of the ramp
width to the period), which is 0.5 in a (triangular
wave), 0.25 in b, 0.125 in ¢, and 0 in d (square
wave). Mach bands are clearly visible in all except
the square wave. The Fourier expansions of the
patterns are given by
F(x)= ¥ [(4A/tm%)

k =0,00

- (sin (mt(2k+ 1))/ (2k+1)%)]

-sin (27w (2k+1)x/T), (1)
where A is the amplitude and T is the period.

The spectra are depicted schematically adjacent
to each waveform (the first harmonic terms are
not to scale). Only the odd terms are non-zero,
and they fall into alternatively positively and
negatively weighted blocks whose size varies
inversely with t. e, f; At left a trapezoid waveform
(t=0.25), decreasing in contrast exponentially
upwards. At right the residual waveform, from
which the first block of positively weighted har-
monics (the first and the third) has been removed,
also decreasing in contrast exponentially
upwards. For various distances (spatial frequen-
cies), note the point at which the Mach bands
disappear from the trapezoid, and also the point
at which the residual waveform falls below detec-
tion threshold. The two thresholds should be
similar. By fixating some distance below the two
panels that Mach bands disappear in the
periphery as contrast decreases well before the
residual ceases to be visible.

wave (1=0.5), where ¢ is the ratio of the width of each ramp
to the period. Classical Mach bands are seen on the trapezoids
(Fig. 1b, 1¢); bright bands are visible at the top of each ramp
and dark bands at the bottom. Note also that the ramps do not
appear to have a uniform brightness gradient and the plateaux
do not appear uniformly dark and light. The triangular wave
also exhibits sharp bands at the peaks and troughs of the
waveform, but the square wave does not.

The Fourier transforms of the trapezoid waveforms (calcu-
lated from the point where the waveform crosses zero) are also
shown in Fig. 1. The components are arranged in blocks alterna-
tively positively and negatively weighted (that is, differing in
phase by 180°). The number of components in each block varies
inversely with ¢ (see formula in the legend), being one for the
triangular wave, and infinite for the square wave. The observa-
tions that Mach bands are not seen on square waves®®, which
have no out-of-phase components, or on trapezoids with very
steep ramps’, where the out-of-phase components are all of high
spatial frequency, led us to suspect that phase may hold the key
to Mach bands.

We isolated residual waveforms from trapezoids by removing
the first block of positive harmonics (see Fig. 1f) and measured
the contrast necessary to see them as a function of spatial
frequency (inverse of their period, T in equation (1), Fig. 1,
legend). The results are shown by the filled circles in Fig. 2. We
then measured the minimum contrast at which Mach bands
could be seen in the original trapezoidal waveforms (open
triangles in Fig. 2). The two curves follow one another closely
as spatial frequency is varied. Interestingly, observers spon-
taneously remarked that the two tasks, setting thresholds for
seeing Mach bands and for detecting residual waveforms,
seemed to make common demands on them, as if the two tasks
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were almost identical. Readers can confirm some of the results
for themselves by observing the contrast at which the Mach
bands of Fig. 1e and the pattern of Fig. 1f disappear at various
viewing distances.

This result suggests that Mach bands are visible only when
the out-of-phase Fourier components (together with all higher
harmonics) reach their independent threshold. To test this more
directly, we attenuated the higher frequency components by
applying a low-pass gaussian filter to various trapezoidal
waveforms and decreased the space constant of the gaussian
filter until the Mach bands disappeared. We then applied the
same filter to the residual waveforms. For all the trapezoids we
investigated, the low-pass filter which removed the Mach bands
attenuated the appropriate residual waveform to a contrast just
below its detection threshold.

It is known that phase discrimination deteriorates in the
periphery”'°. We measured the contrast required to see Mach
bands in various trapezoids and the contrast required to see
their residuals as a function of retinal eccentricity. As eccentricity
increased the contrast required to see Mach bands increased
much more rapidly than that required to see the residual. Indeed,
Mach bands could not be seen at all at eccentricities greater
than three degress (as previously observed by Mach®), whereas
the residual was still clearly visible. Phase sensitivity is indeed
poor in the periphery; when viewed peripherally, trapezoids
become unstable and alternate in appearance between square
and triangular waves.

As a final confirmation of the importance of phase, we created
synthetic waveforms by inverting the sign of all negatively weigh-
ted components of the triangular wave (¢=0.5) and a trapezoid
(t=0.25), to make ‘all positive’ waveforms, having the same
amplitude spectra as the parent trapezoids (Fig. 3). As can be
seen, the luminance profiles are now smooth. There are no Mach
bands in either case, but sharp edges are apparent, similar to
those of a square wave.

The effects of phase on the appearance of distributions of
luminance are more radical when there is variation in two
dimensions. The distribution of luminance in Fig.3c is
pyramidal. In both horizontal and vertical cross-section, the
luminance profile is triangular. The Mach bands of one
dimensional triangular waveforms reappear in two dimensions
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Fig. 2 Contrast required to see Mach bands as a function of
spatial frequency (c per deg) is shown by open triangles, for four
different ¢ values. Contrast required to see the residual waveform
(first block of positive components removed) is shown by the filled
circles. The curves follow one another closely. Open circles show
contrast required to see the fundamental of the trapezoid, for
comparison. All contrasts are expressed as those of trapezoids from
which the waveforms derive.

as star-like patterns where the two dimensional pattern forms
points of high and low luminance. Adjacent is the same pattern
with all phases set positive. The structure is now like that of a
checkerboard, with white and black squares clearly separated
by sharp vertical and horizontal borders.

The results of this study suggest that Mach bands are different
from edges, but that both depend on phase relationships. When
all negative harmonics (180° out-of-phase) are rendered invisible
(by lowering their contrast, increasing their spatial frequency,
or smooth digital filtering), Mach bands disappear. When pat-
terns are displayed peripherally (where the visual system is poor
at resolving phase®'®) the bands also disappear. Finally, if all
negative harmonics of a trapezoid are shifted in phase by 180°,
Mach bands disappear, but an edge is seen where there was
none before.

As mentioned earlier, all harmonics of a square wave are in
zero phase at the point where the waveform crosses zero in a
positive direction and 180° where it crosses zero in a negative
direction. This is also true for ‘all positive’ trapezoids in which
all out-of-phase components have been shifted in phase by 180°.
Elsewhere, the phases of the harmonics advance at different
rates, so no other points have strong congruence of phase.
Trapezoidal waveforms other than the square wave have blocks
of negatively weighted harmonics which break the congruence
of phase at the zero-cross point. However, the periodic halt of
the phase advance of the harmonics causes the phases to pile
up around +90° at the points where the ramps meet plateaux.
A phase grouping around 90° is typical of that produced by
delta functions and bars and may be the signal that produces
Mach bands.

Why should the visual system react so strongly to phase
relationships? A two dimensional basis is required to extract
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Fig. 3 a, b, Synthetic waveforms constructed by inverting the sign
of all negatively weighted components of trapezoids of t value 0.5
(a) and 0.25 (b). The waveforms have no discontinuities, yet we
perceive sharp edges, with no Mach bands; ¢, two dimensional
pattern formed by multiplying a horizontal by a vertical triangular
wave, shows white and black star patterns whch are two-
dimensional analogues of Mach bands; 4, two dimensional pattern
derived from c¢ by inverting the phase of all negatively weighted
harmonics. The star patterns reflecting two-dimensional Mach
bands are no longer visible. Instead, a checkerboard-like pattern
is seen, with sharp borders between the black and white squares.




phase information. The even and odd symmetry of receptive
fields of the visual cortex'! could form such a basis. The receptive
fields vary in size, also allowing for coding of an image at
different spatial scales'?"'°. The potential ability of such a system
to signal edges (odd-symmetric) and lines (even symmetric) has
been noted by many investigators'>'®, We suggest that an
efficient means for the visual system to locate bars and edges
would be to consider the sum of the squared output of even
and odd symmetric filters, which always peaks at points of phase
congruence. After the peak had been located the response of
the odd and even fields at that point would determine if it were
due to an edge or a bar, and give the sign and contrast of the
edge or bar. The clustering of phase around 90°, which occurs
with trapezoids, should also signal a bar or stripe.

Phase is thought to be encoded by even and odd symmetric
detectors in the human visual system"®, It has further been shown
that the sensitivity of the odd, but not the even, symmetric
mechanism is reduced in peripheral vision?®. This would account
for the disappearance of Mach bands in the periphery, at con-
trasts well above those required for the independent detection
of out-of-phase harmonics.

Although the generally accepted explanation of Mach bands
is that they are due to lateral inhibition, several investigators
have noted the problem this presents for square waves and sharp
edges>>%!% and have considered other possibilities. Tolhurst
observed that even symmetric receptive fields (which he termed
bar detectors) may signal Mach bands'®. He also speculated
that for the square wave the response of odd symmetric fields
(edge detectors) may inhibit that of the even symmetric fields
(bar detectors), so no stripes are seen (see also ref. 6). Watt and
Morgan’s®' general theory of spatial vision also predicts bar
signals at the border of a ramp, provided that they are far enough
apart. Both these ideas have some similarity to ours, but our

results (and simulations to be reported in a fuller paper) suggest
that inhibition between edge detectors and bar detectors is
unnecessary.

Finally, we note that trapezoids, like square waves and syn-
thetic ‘all positive’ trapezoids, show zero-crossings at all scales
at the mean luminance point. If edges were encoded by align-
ments of zero-crossings, as has been assumed*~, all should
have edges at that point. But trapezoids do not. A model seeking
phase congruence as the signature of bars and edges, built on
adequate basis functions, can without ambiguity, locate edges
and bars where we see them.
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