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Summary

Evidence exists for a nonverbal capacity for the apprehen-

sion of number, in humans [1] (including infants [2, 3]) and
in other primates [4–6]. Here, we show that perceived numer-

osity is susceptible to adaptation, like primary visual proper-
ties of a scene, such as color, contrast, size, and speed.

Apparent numerosity was decreased by adaptation to large
numbers of dots and increased by adaptation to small num-

bers, the effect depending entirely on the numerosity of the
adaptor, not on contrast, size, orientation, or pixel density,

and occurring with very low adaptor contrasts. We suggest
that the visual system has the capacity to estimate numeros-

ity and that it is an independent primary visual property, not
reducible to others like spatial frequency or density of

texture [7].

Results and Discussion

Jevons, a 19th century economist, rather than counting beans,
assessed his accuracy in estimating the number of beans in
a box at a single glance [8]. He made no errors at four or below
but became increasingly inaccurate as the number of beans in-
creased beyond four. Subsequent studies have confirmed his
findings and the lack of errors below five has led to the concept
of subitizing [9–12], usually presumed to be a separate process
allowing rapid apprehension of the numerosity of collections
containing fewer than five objects. The perception of larger
numbers is usually assumed to require slower and more
cognitive processes, like counting.

All primary visual properties are susceptible to adaptation,
sometimes giving rise to dramatic aftereffects, like the waterfall
illusion [13], and changes in color, size, distance, spatial fre-
quency, and orientation. If numerosity was a primary visual
property, like color or motion, it too should be prone to adapta-
tion. The online demonstration shows that it is. After 30 s adap-
tation to the two different adaptor patches, the two subsequent
patches appear to differ considerably in numerosity (whereas
inspection after adaptation wears off, or counting, shows that
they both number 30 dots). We quantified adaptation effects
by asking subjects whether a test stimulus (of variable numer-
osity), presented to the region that had been adapted, ap-
peared more or less numerous than a probe stimulus (of fixed
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numerosity), presented to a different unadapted position a little
later. The proportion of trials where the test appeared more
numerous than the probe was plotted against test numerosity
and fitted with cumulative Gaussian functions whose mean es-
timates the point of subjective equality (PSE) between test and
probe, and standard deviation the threshold for discriminating
between the two (the just-noticeable difference [jnd]). Figure 1A
shows sample psychometric functions for a 30 element probe,
with and without adaptation to a 400 element stimulus. The ra-
tio of the matched test to probe increases from unity (30 dots)
with no adaptation to more than 3 (100 dots) after adaptation
(we increased the test number to compensate for the reduction
in its apparent numerosity). Note also that that after adaptation
the psychometric function is steeper (on logarithmic coordi-
nates), implying a smaller jnd.

We first measured the effect of adapting to a large number
(400) of dots as a function of number of dots in the probe (Fig-
ure 1B). The amount of adaptation was fairly constant with
probe numerosity down to about 12 dots and then decreased
as the probe approached the subitizing range. The precision of
the match, given by the jnd or Weber fraction (jnd expressed as
a fraction of dot number), did not deteriorate during adapta-
tion, the average percentage Weber fractions for unadapted
and adapted conditions being 28% for unadapted and 26%
for the adapted conditions.

We next investigated whether adaptation to small numbers
can cause an increase in apparent numerosity. The red circles
of Figure 2 show that adaptation occurred in both directions:
Adaptation to small numbers increased apparent numerosity
(so the matched number decreased), and adaptation to large
numbers decreased apparent numerosity. Adaptation to 50
dots (the number of the probe) had no effect, with the amount
of adaptation increasing with the difference between adapt
and probe number. The curves of both subjects were well fit
by linear regression on log coordinates, with a slope around
0.25.

In order to test whether adaptation depends on numerosity
per se or is derived from other factors, like texture density [7],
we performed a number of controls. We first varied the size of
the adaptor and test dots, in order to vary pixel density. In the
above-described study (red circles of Figure 2), both adaptor
and test dots were circles of 6 pixel (20 arcmin) diameter (28
pixel area). We repeated the experiment with square adaptor
stimuli of 8 3 8 pixels (64 pixels) and test stimuli of 3 3 3 pixels
(9 pixels, 1/7 as many as the adaptor). If pixel density were the
relevant attribute, the curves of Figure 2 should shift leftwards
by a factor of 7, so the null point occurs when adaptor and test
pixel density are matched (for adaptation dot number of 7).
This clearly does not occur. For naive observer PB, the curves
remain superimposed; for DB, there is a slight shift in the
opposite direction.

We also examined the effect of adaptor contrast. As
Figure 2C shows, contrast of adaptor dots had little effect on
the magnitude of adaptation. At contrasts as low as 12%,
the adaptation effect is still nearly 2-fold, dropping only near
detection threshold. It appears that the only factor that
affects adaptation is numerosity, not density, orientation, or
contrast.
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Figure 1. The Effect of Adaptation on Numerosity

(A) Sample psychometric functions with (filled circles) and without (open

squares) adaptation, plotting the proportion of trials where the probe

seemed more numerous, as a function of number of test dots. The vertical

dashed lines indicate the PSE of the match, about three times higher than

the probe number (indicated by the arrow) after adaptation.

(B) Magnitude of adaptation (ratio of test to probe dot number at PSE) as

a function of the number of dots in the probe (symbols as for Figure 1A).

The error bars (here and elsewhere) show 6 1 standard error of the mean

(SEM), calculated by bootstrap. For a wide range of numerosities, adapta-

tion caused a doubling of the matched number.

Figure 2. Effect of Numerosity and Contrast of the Adaptor

(A and B) Effect of adaptor numerosity and density on apparent numerosity

of a 50 dot probe. The red circles refer to adaptor and test dots of 6 pixel (20

arcmin) diameter and the squares to adapters of 8 3 8 and tests of 3 3 3

pixels (7 times more adapt than test pixels for matched numerosity). In all

cases, the adapters were of 50% Michelson contrast, and the tests were

100%. Adaptation occurs for both high and low adaptation numbers and

is independent of pixel density.

(C) Effect of adaptor contrast on apparent numerosity of a 30 dot probe (red

symbols indicate DB, blue symbols indicate PB). The vertical dashed lines

indicate the contrast threshold for detection of the patterns (see the Exper-

imental Procedures), and the horizontal lines indicate the matches with no

adaptation. Adaptation effects were pronounced down to near-threshold

contrasts.
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As a direct control for the effects of texture, we next adapted
to vertical elements and tested either vertical or horizontal el-
ements. As the bar graphs of Figure 3A show, there was little
difference in the magnitude of the effects. If texture or spatial
frequency was being adapted, one would expect some spec-
ificity for orientation. We also performed discriminations (with-
out adaptation) for patterns of completely different pixel den-
sity, orientation, Fourier transform, etc. An example is shown
in the psychometric functions of Figure 3B, where the test or
probe could be either small 5 3 5 pixel (16.5 3 16.5 arcmin)
squares or 20 3 5 pixel rectangles, randomly vertical or hori-
zontal. Neither the PSE nor the width of the curves depended
on the type of stimuli being compared, even though the stimuli
were visually completely different, varied by a factor of 4 in
pixel density and Michelson contrast, and had completely
different Fourier power spectra. All these results agree with
a recent study (Jun Zhang, personal communication) showing
that apparent numerosity of a field of dots can be reduced by
the addition of links between some dots: The linked pair con-
tributes to the numerosity as a single entity, rather as two
separate dots.

We propose that just as we have a direct visual sense of the
reddishness of half a dozen ripe cherries, so we do of their six-
ishness. In other words there are distinct qualia [14] for numer-
osity, as there are for color, brightness, and contrast. One of
the more fascinating aspects of this study—as readers can
verify for themselves with the online demonstration—is that
although the total apparent number of dots is greatly reduced
after adaptation, no particular dots seem to be missing. This
reinforces old and more recent evidence [15–17] suggesting
that the perceived richness of our perceptual world is very
much an illusion. Although we seem to perceive 30 or 50 or
100 individual dots occupying very specific positions, this



Figure 3. Effect of Element Size and Shape

(A) Effect of adaptor orientation. Subjects adapted to a field of 200 vertical

elements (3 3 10 pixels) and matched a field of either vertical or horizontal

same-sized elements to a probe (same orientation as test). The effects of

orthogonal and parallel adapters were similar.

(B) Psychometric curves for matching numerosity of element arrays that

were the same (5 3 5 or 5 3 20 pixels), small with large, or large with small.

Element size and shape has very little effect of either PSE or Weber fraction

(given by the function width), suggesting that the matches were based

solely on number of elements.
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cannot be the case because adaptation could not reduce or
increase the total number of dots without annihilating or creat-
ing them. Rather, it would seem that what we see derives from
a statistical description of the scene, where some aspects of
the elements (color, shape, contrast, etc.) are encoded, to-
gether with a rough (630%) estimate of their numerosity.

Recent studies have demonstrated the existence of neurons
broadly tuned for number in the parietal cortex of macaque
monkeys [4, 18, 19]. Functional magnetic resonance imaging
(fMRI) studies also point to their existence in a the intraparietal
sulcus in humans, both for symbolic [12, 20, 21] and nonsym-
bolic [22] representation of numbers. These neurones are likely
candidates for the physiological substrate of the visual sense
of number, and, like most neurones, they are probably adapt-
able. Vision has formidable built-in computational powers,
correcting for variation in image size with distance, in image
shape with tilt, and in image spectral composition with changes
in illuminant, allowing for approximately constant perception of
object size, shape, and color; it can also segment images,
a difficult computational task [23]. It should come as no sur-
prise that it can provide approximate estimates of number.

Experimental Procedures

Stimuli

Stimuli were generated by a framestore (Cambridge Research Systems VSG

Visage) and displayed on the face of a Hitachi Accuvue monitor at 170 Hz

framerate, with a resolution of 640 3 480 pixels and mean luminance of

18 cd/m2. The 37 3 28 cm screen subtended 35� 3 26.5� at the viewing dis-

tance of 60 cm (each pixel 3.3 arcmin wide). The stimuli were fields of small

disks (of 6� diameter, unless otherwise stated), randomly positioned within

a circle of 10� diameter (similar in appearance to those of the demo in the

Supplemental Data available online). The disks were half bright and half

dark, of 100% contrast (unless otherwise stated).

Procedure

Subjects fixated on a fixation spot at the center of the screen. The adapta-

tion stimuli were centered 7� away from fixation, above left for half the ses-

sions and below right for the others. The test stimulus was displayed in the

same position as the adaptor for 600 ms, and then the probe stimulus was

displayed for 600 ms, directly above or below the test stimulus (all stimuli

were separated by a pause of 400 ms). Subjects adapted for 30 s at the be-

ginning of each session, with 7 s top-up adaptation between trials. On each

trial, subjects were required to report whether the probe appeared more or

less numerous than the test, guessing if unsure. After each trial, an adaptive

algorithm (QUEST [24]) estimated the PSE, which, after addition of a random

quantity (drawn from a log Gaussian distribution of standard deviation 0.15

log units) determined the probe number for the following trial. The technique

ensured an approximately equal number of right and left button presses, as

well as placing most trials at a numerosity for the estimation of the best PSE

and curve slope. The proportion of ‘‘greater’’ trials was plotted against the

logarithm of probe numerosity and fit with a cumulative Gaussian function

(see Figure 1A), whose mean yielded an estimate of PSE and standard

deviation an estimate of jnd.

Contrast thresholds (reported in Figure 2C) were measured by a two-alter-

native forced-choice procedure. Half of the dots (above or below a diagonal

line radiating from fixation) were removed, and subjects were required to

identify in which half the dots were confined. Again the QUEST [24] algo-

rithm homed in near threshold, and threshold was calculated by Gaussian

fit (allowing for guessing).

Subjects

Four subjects were measured systematically for most conditions—the two

authors and two others naive to the goals of the study (PB and ED). Sample

results are shown in the figures.

Supplemental Data

A demonstration of adaptation to numerosity is available at http://www.

current-biology.com/cgi/content/full/18/6/---/DC1/.
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