
Poor Haptic Orientation Disc
Current Biology 20, 223–225, February 9, 2010 ª2010 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2009.11.069
Report
rimination

in Nonsighted Children May Reflect
Disruption of Cross-Sensory Calibration
Monica Gori,1,* Giulio Sandini,1 Cristina Martinoli,2

and David Burr3,4

1Robotics, Brain and Cognitive Sciences, Istituto Italiano di
Tecnologia, Via Morego 30, 16163 Genoa, Italy
2Istituto David Chiossone, Corso Armellini 11, 16122 Genoa,
Italy
3Dipartimento di Psicologia, Università Degli Studi di Firenze,
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Summary

A long-standing question, going back at least 300 years to

Berkeley’s famous essay, is how sensory systems become
calibrated with physical reality. We recently showed [1]

that children younger than 8–10 years do not integrate visual
and haptic information optimally, but that one or the other

sense prevails: touch for size and vision for orientation
discrimination. The sensory dominance may reflect cross-

modal calibration of vision and touch, where the more accu-
rate sense calibrates the other. This hypothesis leads to

a clear prediction: that lack of clear vision at an early age
should affect calibration of haptic orientation discrimina-

tion. We therefore measured size and orientation haptic
discrimination thresholds in 17 congenitally visually impaired

children (aged 5–19). Haptic orientation thresholds were

greatly impaired compared with age-matched controls,
whereas haptic size thresholds were at least as good, and

often better. One child with a late-acquired visual impairment
stood out with excellent orientation discrimination. The

results provide strong support for our crossmodal calibration
hypothesis.

Results

We used the child-friendly technique described in Gori et al. [1]
to measure haptic discrimination thresholds for size and orien-
tation discrimination in a group of 18 visually impaired children
(5–19 years of age: 17 congenital, 1 acquired). Measurements
were made with a two-interval forced-choice procedure. Two
physical stimuli were presented sequentially on each trial,
plastic blocks (average height 50 mm) for the size discrimina-
tion and tilted bars (average angle 45�) for the orientation
discrimination; children reported which stimulus (first or
second) was higher or slanted more clockwise (see Supple-
mental Experimental Procedures and Movie S1, available
online, for details). One stimulus (randomly first or second)
was the standard, always 55 mm high (for size) or 45� slant
(for orientation), and the other the probe, of variable height
(45–65 mm) or orientation (0�–90�). The height and the orienta-
tion of the probe were varied by an adaptive algorithm [2] for
a total of w80 trials per condition (depending on availability
of each child, as reported in Table S1). The control group
data were taken from our previous study [1].
*Correspondence: monica.gori@iit.it
The proportion of trials where the probe was judged to be
taller or more slanted than the standard was computed for
each probe height and orientation. The resulting psychometric
function was fit by cumulative Gaussian function, whose stan-
dard deviation (s) estimated the discrimination threshold for
that condition (thresholds measured for each child are re-
ported in Table S1). Figures 1A and 1B show sample psycho-
metric functions for a 7-year-old visually impaired subject
(filled green circles) for haptic size and orientation discrimina-
tion (see Figure S1 for other examples), compared with those
of normally sighted age-matched children (open black
squares). The size discrimination functions are steep and
orderly, yielding thresholds similar to age-matched controls.
The orientation data, however, are disorderly, with only
a shallow dependence on orientation, yielding a far greater
threshold in the visually impaired subject than in the age-
matched control.

The results for all 17 congenitally visually impaired children
are shown in Figure 1C for size and Figure 1D for orientation.
For size discrimination, the visually impaired (colored sym-
bols) were slightly better on average than controls (t(16) = 3.5,
p < 0.002, two-tailed), but for orientation discrimination they
were far worse (t(16) = 3.27, p < 0.003, two-tailed), by an
average factor of 2.2. There is a tendency for the difference
between visually impaired and visually normal participants to
diminish with age, but it does not vanish because even older
children show worse orientation discrimination than controls.
Orientation (but not size) thresholds are correlated with visual
acuity, with lowest acuity corresponding to poorest orientation
thresholds (R2 = 0.24, p < 0.03; see Figure S2). Figure 2 plots
size thresholds (normalized by the average of age-matched
controls) against normalized orientation thresholds. Most
points lie in the lower right quadrant, implying slightly better-
than-average size discrimination and worse-than-average
orientation discrimination. The arrows at the axes show aver-
ages across the entire group, 2.2 6 0.3 for orientation and
0.8 6 0.06 for size. There is one clear exception to the pattern
of results, shown by the green star. This is a child who had
normal vision from birth but became severely visually impaired
at about 32 months.

Discussion

A long-standing question in perception is how sensory
systems become calibrated with physical reality. In his famous
300-year-old ‘‘Essay toward a new theory of vision,’’ Berkeley
[3] observed that vision has no direct access to attributes such
as distance, solidarity, or ‘‘bigness,’’ which become tangible
only after they have been associated with the experience of
touch (proposition 45): ‘‘touch educates vision,’’ perhaps
better expressed as ‘‘touch calibrates vision.’’ This concept
could explain why size discrimination thresholds are domi-
nated by touch. But why are orientation thresholds dominated
by vision? Perhaps Berkeley was not quite right, and touch
does not always calibrate vision, but the more robust and
hence more accurate sense for a particular perceptual task
is the calibrator (as the more precise sense is the more impor-
tant for sensory fusion [4, 5]). Accuracy is defined in absolute
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Figure 1. Individual Data for Haptic Orientation and Size

Discrimination

(A) Example of a psychometric function for a nonsighted

7-year-old child (subject 2, filled green circles) and for a nor-

mally sighted age-matched child (open black squares) for

haptic size discrimination, plotting proportion of trials

where the test stimulus was judged to be taller than the

standard as a function of test size. The data are fit with

a cumulative Gaussian function whose standard deviation

gives an estimate of size discrimination threshold (see also

Figure S1A).

(B) Same as (A) but for orientation discrimination. The

psychometric function for the nonsighted 7-year-old child

(filled green circles) is far less steep, producing a threshold

three times higher than the age-matched control (open black

squares) (see also Figure S1B).

(C) Size discrimination thresholds for the visually impaired as

a function of age. Each colored symbol represents a different

subject (see Table S1 for more details), and the green line is

the linear regression of these points. Open black symbols

show the average of the typically sighted control group

taken from publication [1]. Error bars on individual data

points are 6 1 standard error of the mean (SEM) obtained

by bootstrap [21], and those on the control data are 6 1

SEM of intersubject variability.

(D) Orientation discrimination thresholds for the visually

impaired as a function of age, with the same symbol code

as (C).
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terms, as the distance from physical reality, whereas precision
is a relative measure, related to the reliability or repeatability of
the results: they are not necessarily the same (but are often
correlated). It is therefore reasonable to suggest (but hard to
prove) that for size, touch will be more accurate, because
vision codes it indirectly via a complex calculation based on
retinal size and estimation of distance. Orientation, on the
other hand, may be represented more accurately by the visual
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Figure 2. Individual Normalized Haptic Thresholds

Individual orientation thresholds normalized by the age-matched controls,

plotted against normalized size thresholds, with the same symbol code as

in Figures 1C and 1D. The thresholds were normalized by dividing each

value reported in Figures 1C and 1D and Table S1 by the average age-

matched control, obtained by interpolating the average thresholds for

typical vision (black lines in Figures 1C and 1D). Most points lie in the lower

right quadrant, implying better size and poorer orientation discrimination

(see also Figure S2). The arrows refer to group averages, 2.2 6 0.3 for orien-

tation and 0.8 6 0.06 for size. The green star in the lower left quadrant is the

acquired low-vision child.
than the haptic system. Although it is given only indirectly from
haptic signals via complex coordinate transforms, for vision it
may be a relatively more simple calculation from responses of
orientation-selective cells in primary visual cortex [6],
combined with a vestibular signal about head inclination. It
seems reasonable to assume that this calculation is less
problematic than that for size, where distance itself is not
immediate.

Several studies have demonstrated that cross-sensory cali-
bration does occur in various situations where the information
of one sense may be insufficient or conflictual (e.g., [4, 7, 8]).
Our idea differs slightly from those of these authors who
assumed, explicitly or implicitly, that the more precise sense
calibrates the other. Because accuracy is often correlated
with precision, the two are often difficult to tease apart. One
exception is a recent study [9] showing that for audiovisual
synchrony adaptation, the less-precise sense (vision) seems
to be the calibrator. The authors suggest that although, for
timing tasks, visual information is less precise than auditory
information, it does not suffer from the systematic distance-
dependent inaccuracies of sound and is therefore more accu-
rate and appropriate for calibration.

We have previously suggested [1] that touch calibrates
vision for size judgments but vision calibrates touch for orien-
tation. Calibration is probably necessary at all ages, but during
the early years of life, when children are effectively learning to
see, reach, and grasp, calibration may be expected to be more
important. It is during these years that limbs are growing
rapidly and eye length and eye separation are increasing, all
necessitating constant recalibration between sight and touch.
Indeed, many studies suggest that the first eight years in
humans correspond to the critical period of plasticity for
many properties such as binocular vision [10] and acquiring
accent-free language [11]. The mechanism of calibration
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remains unknown, but there exists good evidence from
imaging and transcranial magnetic stimulation studies for
cross-sensory interactions between vision and touch, particu-
larly in haptic discrimination of orientation [12].

A strong prediction from the calibration hypothesis is that
early impairment of the sense required for calibration should
impact on the sense being calibrated. Specifically, haptic
impairment should lead to poor visual size discrimination,
and visual impairment should lead to poor haptic orientation
discrimination. We tested and verified the latter of these
predictions: haptic orientation thresholds were far worse in
visually impaired subjects than controls, by more than a factor
of 2 on average, whereas size discrimination was actually
better than controls by a factor of 1.25.

Many previous studies have examined haptic perception in
the visually impaired with seemingly contradictory results:
some studies show the performance of blind and low-vision
subjects to be as good or better than normally sighted controls
in tasks such as size discrimination with a cane [13], haptic
object exploration and recognition [14], and tactile recognition
of 2D angles and gratings [15], whereas other tasks, including
haptic orientation discrimination [16], visual spatial imagina-
tion [17], and representation and updating of spatial informa-
tion [18], have shown impairments. Visually impaired children
had particular difficulties with rotated object arrays [19]. And
most recently, Dopjans and colleagues (2009, 10th Interna-
tional Multisensory Research Forum, abstract) have shown
that congenitally blind subjects are worse than both blind-
folded sighted and acquired-blind subjects at haptic recogni-
tion of faces. It is possible that the key to understanding the
discrepancy in the literature is whether the haptic task may
have required an early crossmodal visual calibration.

Of our sample of 18 subjects, there was one clear exception
with orientation thresholds better than the controls. This
subject had good vision until the age of about 32 months.
Such patients are (fortunately) very rare in Italy, so we were
unable to confirm this result on others, but we presume that
the fine orientation thresholds in this subject result from the
early visual experience (before 2.5 years of age), which may
have been sufficient for the visual system to calibrate touch.
Note that at this age, the haptic system is still not mature [1].
However, early exposure to vision seems to be sufficient to cali-
brate the developing haptic system, suggesting that the sensi-
tive period for damage is shorter than that for normal develop-
ment. This is consistent with other evidence for multiple
sensitive periods, such as global motion perception [20].

The suggestion that specific perceptual tasks may require
crossmodal calibration during development could have prac-
tical implications, possibly leading to improvements in rehabil-
itation programs. Where cross-sensory calibration has been
compromised, for example by blindness, it may be possible
to train people to use some form of ‘‘internal’’ calibration or
to calibrate by another modality such as sound.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, two figures, one table, and one movie and can be found with this

article online at doi:10.1016/j.cub.2009.11.069.
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