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This study examines the effect of coarse quantization (blocking) on image recognition, and explores
possible mechanisms. Thresholds for noise corruption showed that coarse quantization reduces
drastically the recognizability of both faces and letters, well beyond the levels expected by
equivalent blurring. Phase-shifting the spurious high frequencies introduced by the blocking (with
an operation designed to leave both overall and local contrast unaffected, and feature localization)
greatly improved recognizability of both faces and letters. For large phase shifts, the low spatial
frequencies appear in transparency behind a grid structure of checks or lines. We also studied a
more simple example of blocking, the checkerboard, that can be considered as a coarse quantized
diagonal sinusoidal plaid. When one component of the plaid was contrast-inverted, it was seen in
transparency against the checkerboard, while the other remained “captured” within the block
structure. If the higher harmonics are then phase-shifted by =, the contrast-reversed fundamental
becomes captured and the other seen in transparency. Intermediate phase shifts of the higher
harmonics cause intermediate effects, which we measured by adjusting the relative contrast of the
fundamentals until neither orientation dominated. The contrast match varied considerably with the
phase of the higher harmonics, over a range of about 1.5 log units. Simulations with the local energy
model predicted qualitatively the results of the recognizability of both faces and letters, and
quantitatively the apparent orientation of the modified checkerboard pattern. More generally, the
model predicts the conditions under which an image will be “captured” by coarse quantization, or

seen in transparency. © 1997 Elsevier Science Ltd
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Feature detection

INTRODUCTION

When images are coarse quantized by setting all pixels
within regular blocks to the average level, they become
completely unrecognizable, although there remains
sufficient information at low spatial frequencies for
recognition (readily verified by blurring the image). This
now classic illusion, first demonstrated by Harmon
(1973; Harmon & Julesz, 1973), is one of the most
compelling of visual effects. Examples of the blocking
phenomenon are now common in most vision textbooks,
and are often used as a device for artists, for special
effects in publicity, and to disguise identity on television
(not very effectively as the identify can be unmasked by
simple blurring). However, despite the many demonstra-
tions that coarse quantization reduces recognizability
drastically, there have been very few serious attempts to
quantify the strength of the phenomenon.
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Costen et al. (1994, 1996) have measured reaction
times and accuracy for recognizing coarse quantized
faces. Their results show that reaction times increase and
accuracy decreases with decreasing sampling rate, at a
higher rate than blurred images with the same informa-
tion content. However, the results measure only per cent
correct performance at a given difficulty level, without
attempting to establish a more quantitative measure of
performance, such as a contrast or signal-to-noise
threshold. Another difficulty is that the images used in
their studies were displayed abruptly, a situation that
favours low spatial frequencies (e.g., Burr, 1981). Uttal et
al. (19964, b) have also made measurements along these
lines, using briefly presented stimuli, and small images.
The effects of blocking were quite pronounced, although
thresholds were not measured.

The original explanation of Harmon & Julesz (1973)
for the phenomenon was that mechanisms tuned to the
high spatial frequencies introduced by the blocking mask
the low spatial frequencies that contribute to recognition.
However, this explanation has been questioned, both on
the grounds that the power of the spurious frequencies is
low compared with the image spatial frequencies, and
because of experimental evidence showing that recogniz-
ability can be restored by adding further high-frequency
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noise, at orientations different from the spurious
frequencies (Morrone et al., 1983). Several other
explanations suggest a more active role of the spurious
blocking components.

The effects of blocking on recognition are well
explained by David Marr’s (1982; Marr & Hildreth,
1980) theories of the construction of the “primal sketch”
of an image. Marr assumes that a feature will be marked
in the primal sketch only if there exists a correspondence
in position and orientation of zero crossings over a
continuous range of operator sizes. For blocked images,
the zero-crossings that define the face occur at similar
positions to those of the medium scales (which follow a
grid-like structure), so the features marked for the primal
sketch are mainly those of the higher channel, that do not
form the impression of a face. An important assumption
to this theory is that we are subjectively aware of the
primal sketch, but not of the zero-crossings from which it
is made (Marr, 1982, p. 73), so we do not have
independent access to the low-frequency information of
the blocked images (although low-level hardware does
sense this information). Canny (1983, 1986); Witkin
(1983) and Koenderink (1984) have developed this idea
further, proposing different ideas for continuous integra-
tion of features across scales. Canny (1983) extended his
model, which synthesises edge information by analysing
different scales progressively from high to low, to
simulate the blocking illusion. The simulations predicted
both the illusion, and the improvement of recognizability
of the blocked image after corruption by random noise.

The MIRAGE algorithm of Watt & Morgan (1985)
also predicts the blocking illusion, as well as the
breakdown of vernier and stereo acuity with sampling
(Watt & Morgan, 1982; Morgan & Watt, 1984). An
essential part of their model is the obligatory recombina-
tion of spatial frequency channels (after an early
rectification) before object recognition, accounting for
the Lincoln illusion of Harmon and Julesz, and other
effects of sampling.

We have also suggested a similar explanation, based on
the local energy model of image organization (Morrone
& Burr, 1988, 1993; Burr & Morrone, 1990, 1992, 1994).
This explanation also assumes that vision must construct
a symbolic “feature-based” description of the image, not
unlike the primal sketch. As with Marr’s model, the
features are calculated separately at each scale (by peaks
in local energy rather than zero-crossings), but then
recombined (rather than requiring correspondence across
adjacent scales). For recombination, the separate feature
maps are each given an indetermination of localization
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factor, proportional to scale size, then summed. This
automatically favours the high-scale operators that
respond to the high-frequency block structure, so this
dominates the combined map. The low-scale information
therefore becomes unavailable as an independent source
of information (Burr & Morrone, 1990, 1994; Morrone &
Burr, 1993).

An important concept for the local energy model is that
image features occur at points of phase congruence of the
component harmonics. This leads to the prediction that
breaking phase congruence across spatial scales should
disrupt the appearance of a single feature set, and
allowing for multiple features to be perceived nearby, in
transparency. In this paper we verify this prediction by
varying the phase of the spurious harmonics of blocked
images. This process restores recognizability in blocked
images, causing the low-frequency image to be seen in
transparency. We study this effect further with a highly
simplified blocked image derived from a checkerboard
pattern, and go on to search for a general description of
the conditions that support image transparency. These
results have been previously published in abstract form
{Morrone & Burr, 1994, 1995).

RECOGNITION OF COARSE QUANTIZED FACES
Methods

As the original demonstration of Harmon (1973) used a
human face (Abraham Lincoln), we first measured the
effect of blocking on face recognition, and then the effect
of phase.

Stimuli

The faces of six young women, all well known to the
subjects were photographed in ten different poses,
ranging from full frontal to half-profile in each direction,
and with various expressions. All photographs were taken
with the same beret to disguise obvious differences such
as hair length and colour. To minimize further the use of
local rather than recognition cues, all images were
mirror-inverted symmetrically around the midline, to
provide another 10 poses. Observers were required to
identify the face on a particular trial by pressing the
appropriate response button (from a choice of six).

All image manipulations were performed on a Silicon
Graphics Iris-35 computer, using the HIPS image
processing package (Landy er al., 1984). The photo-
graphs were scanned (Epson GT-6000 scanner) and
digitized to 128 x 128 pixel images, then scaled to use the
full range of 256 grey levels. They were then coarse

FIGURE 1 (facing page). Examples of various versions of the blocked images used for the face recognition study. (C) shows the
normal blocked image, obtained by first blurring the image at the Nyquist frequency, then coarse quantizing into 12 x 12 blocks,
and rescaling to use the full luminance range that would not saturate during the phase shifts. This produced an averaged RMS
contrast of 0.15, after combination with noise. The other images were all derived from this. (A) is a lowpass filtered version,
showing all frequencies below 8.2 ¢/picture width (ideal filter). (B) shows the spurious high frequencies, obtained by subtracting
(A) from (C). (D) shows the blocked image with the spurious components phase-shifted by n [equivalent to subtracting (B) from
(A)]. (E) and (F) show the blocked image with the spurious components phase-shifted by + /2, following the procedure
outlined in Fig. 2. For each of the phase-shifted conditions [(D), (E) and (F)], the lowpass face tends to emerge in transparency
behind grid.
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quantized to 12x12 blocks [Fig. 1(C)], and lowpass
filtered again (ideal filter, 8.2 c/picture width) to produce
the blurred images of Fig. 1(A). The spurious frequencies
[Fig. 1(B)] introduced by the blocking process were
obtained by subtracting the blurred image from the
blocked image. The phase of the spurious frequencies
was shifted by various amounts (see below) then
resummed to the blurred image. Figure 1(D) shows
examples of a phase shift of . Figure 1(E) and (F) show
examples with 7/2 and —7/2 phase shifts.

Two-dimensional phase displacement. To study the
effects of high-frequency phase we required an image
transformation that changed the high-frequency edges to
a different feature, without changing its position,
orientation or local RMS contrast, and leaving the
amplitude spectrum unaffected. To displace phase by n
(changing the sign of all edges) it is sufficient to invert the
contrast of the spurious harmonics. For other intermedi-
ate phases, however, this is more difficult. Although for
one-dimensional (1-D) images this can be simply
achieved by applying the Hilbert to the original image
(shifting the phase spectrum by n/2 and multiplying the
amplitude spectrum by the sign function), the Hilbert
transform is not defined in two dimensions. One
possibility would be to apply the Hilbert transform along
one prevailing orientation (say vertical), but this would
transform only vertical edges to lines, leaving horizontal
edges unaffected. Applying along two or more orienta-
tions separately, then summing the result would annul
part of the amplitude spectrum (because of the inherent
symmetry of opposing quadrants of the two-dimensional
Fourier Transform).

We therefore devised a transform that insured a local
phase shift in two dimensions, to convert odd-symmetric
edges to even-symmetric lines of the same local RMS
contrast. We took advantage of the regularity of the
spurious harmonics and of the fact that the distribution of
power is mainly along the horizontal and vertical
orientations [see Fig. 2(B, D)], and treat the patterns on
a column-by-column and row-by-row basis. The Hilbert
transform was calculated for each row of the original
image [see sketch in Fig. 2(E)], by adding n/2 to the
phase spectrum of the input signal and multiplying the
amplitude spectrum by the sign function, and then by
applying the inverse Fourier transform. A new image was
built [Fig. 2(F)] from the Hilbert transform of the single
rows. Applying the same procedure to the new image, we
then calculated the Hilbert transform for each column.
The resulting image was added to the original lowpass
frequency image to obtain the stimulus phase-shifted
by m/2. It is important to note that this procedure affects
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only the phase spectrum, leaving the amplitude spectrum
intact [compare, for example, Fig. 2(B) and Fig. 2(D)].
To obtain phase shifts other than 90 deg, the original
and transformed images of the spurious spatial frequen-
cies were combined in appropriate proportions. The
output image O(x,y) for a phase shift of ¢ was given by:

O(x.y) = cos(P) (x,y) + sin(@)T(x, y)

where I(x,y) is the original image and T7(x,y) the
transformed image. This procedure affects neither the
position nor the local RMS contrast of features.

Noise corruption. As a performance index of recogniz-
ability, we chose to measure the maximum amount of
noise that could be tolerated for reliable recognition
(rather than simply per cent correct or reaction times).
Signal and noise stimuli were treated separately, and
summed on-line during the experiments. For each
condition, 40 noise stimuli were prepared, each from an
independent draw of white noise. The noise images were
processed in the same way as the signal images
(described above). They were filtered, rescaled to span
the whole grey-scale range and blocked with the same
regime as the faces or letters. Spurious harmonics,
extracted by subtraction, were phase-shifted and re-
summed to the blurred image. During the experiment,
signal and noise images were summed on-line, each with
variable contrast. Although the signal and noise images
were processed separately (to reduce the number of
stored images), the final result is the same as would have
been if the signal and noise were mixed before
processing, as all the operations (integration, filtering
etc.) were linear. Examples of noisy blocked stimuli are
shown in Fig. 3.

All images were prepared in advance, and stored on
disk. In practice, 120 different images were prepared for
the faces (six faces in ten different poses, plus their mirror
reflections) and 40 samples of noise. For all stimuli, there
was the blurred condition, the standard blocked condi-
tion, and the blocked condition with the higher harmonics
shifted (seven different phase shifts), yielding a total of
2880 images, each 128 x 128 pixels. Contrasts of the
images are expressed as RMS contrast, the standard
deviation of the images divided by the mean. The average
RMS contrast on the screen was 0.15 for the faces, and
(.22 for the noise, at maximum.

Psychophysical procedures

Subjects were required to identify the face in a six-
alternative, forced-choice paradigm, by pressing one of
six response buttons. The images were presented on a
Barco Calibrator monitor, driven by a framestore (Cam-
bridge Research VSG) under computer control (IBM

FIGURE 2 (facing page). (A) and (C): A blocked image and one with the spurious components phase-shifted by n/2. (B) and

(D): The power spectra of the high frequencies (>8.2 c/picture width) of (A) and (C), showing that it is unaffected by the phase

manipulations. The low frequencies have been omitted to display the spurious frequencies more clearly. (E) and (F) illustrate the

technique for phase-shifting the two-dimensional spectrum by n/2. The Hilbert transform was calculated for each row of the

original spurious image by adding 7/2 to the phase spectrum and multiplying the amplitude by sign function, then applying the

inverse Fourier transform to produce an intermediate image. We then calculated the Hilbert transform for cach column to
produce the 7/2 phase-shifted image, comprising the high-frequency components of (C).
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compatible PC). The PC read the images from the Silicon
Graphics disk (via PCNFS network software), and
supervised the image display and collection of responses.
The images were all 128 x 128 pixels, subtending
9x9 cm on the display screen, subtending 5 deg from
the viewing distance of 1 m. Signal and noise images
were interleaved on alternate frames (framerate 170 Hz),
and the contrast of each varied independently by
changing look-up tables (with appropriate linearization).

To minimize temporal transients that may favour the
low spatial frequencies of the faces, the images were
faded in and out of the noise gradually, as shown in Fig.
4. Before each trial, the contrast of the noise was maximal
(0.2) and the signal attenuated by 2 log units to 0.0015.
On initiation by the subject (time O in Fig. 4), the signal
was faded in and the noise faded out exponentially, both
at 0.1 log units every two frames. The signal reached
maximum contrast (0.15) after 40 frames (230 msec).
The noise continued to decrease only until it reached the
appropriate level for that trial: Fig. 3 shows examples for
two noise contrasts. The display remained constant for
1 sec after the signal had reached maximum contrast,
then the signal decreased and the mask increased to their
initial values. After the subject had responded, a new
sample of noise was displayed, and the procedure
repeated after a short interval. The new images were
read from disk while the subject responded to the
previous trial, which did not, in practice, cause noticeable
delays.

The contrast of the noise (during the presentation
plateau) varied from trial to trial, guided by the QUEST
routine to home in near threshold. However, to ensure
coverage of a range of noise contrasts, the QUEST
estimate was randomly perturbed by =+ 0.1 log units. At
least five separate QUEST sessions, each of 40 trials,
were run, and the final estimates of threshold were
obtained by fitting a cumulative gaussian distribution to
the probability of seeing against log noise contrast, by the
simplex technique (Nelder & Mead, 1964):

£s) =7+ ;Jzﬁ;je-"ﬁ(’“?“)zds (1)

where s is the logarithm of the inverse of noise contrast,
so the logarithm of the inverse of noise contrast at
threshold, 7 the guessing factor (1/6 in this case), and ¢
the standard deviation (in log units).

Results

Recognition was measured for blurred images [Fig.
1(A)], for the images quantized at 11 pixels per block
[Fig. 1(B)], and for the blocked images with the higher
harmonics phase-shifted by various amounts [see Fig.
1(D-F)]. Figure 3 shows examples of the images with
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0.002 noise contrast (left-hand figures) and 0.046 noise
contrast (right-hand figures). It is apparent that the noise
degrades recognition, particularly for the blocked image
in zero phase. During each experimental session, at least
four conditions were run simultaneously, with the
threshold noise contrast for each condition determined
by independent QUEST staircases.

Figure 5 shows two examples of how recognition
performance varied with noise contrast, for a blocked
pattern and one phase-shifted by =n. The percentage
correct was systematically better for the phase-shifted
pattern at all noise contrasts. The curves are cumulative
gaussian fits, following Eq. (1). It is apparent that both the
mean of the fit (so) and the slope (o) are different for the
two conditions. The dotted line corresponds to 58%
performance, intersecting the curves at s = so. The dashed
curve corresponds to the 74% performance level, half a
standard deviation (s =sy+ 0/2) higher. A probable
reason for the shallower functions for the 0 phase shifts
(supported by subjective reports), is that despite our
efforts to eliminate local cues for recognition (20
different views of each face, with gross features such as
hair removed), some cues remained for at least some of
the faces, enabling subjects to guess the response with
greater than chance performance. It is, therefore,
probably more reasonable to consider the higher criterion
of 74% performance.

Noise contrast thresholds are shown in Fig. 6, for both
the 58% criterion (filled symbols) and the 74% criterion
(open symbols). The broken lines show performance for
the blurred faces (dashed: 58%, dotted: 74%). For both
subjects, for both criterion levels, coarse quantization
clearly decreased performance well beyond that expected
from the reduction of spatial frequency content (compare
performance for O phase shift with that for the blurred
images). The degree to which performance was affected
varied with subject and criterion level, ranging from a
factor of 2 to a factor of 20. However, when the phases of
the higher harmonics were displaced, performance
steadily recovered. For the maximum phase shifts of =,
the results were very similar to those of the blurred
stimuli, indicating that when the spurious harmonics were
out-of-phase, they had very little effect on recognition.

The effects seem to be more pronounced if 74% correct
criterion is taken as threshold, rather than 58%. This is
probably because the slope of the psychometric function
varies with phase, being far shallower at O than at 7.

RECOGNITION OF COARSE QUANTIZED LETTERS

Although the effects of coarse quantization were
originally described for face recognition, most types of
images will be rendered unrecognizable when quantized

FIGURE 3 (facing page). Examples of stimuli used for the face recognition experiment. The images on the left [(A), (C) and

(E)] have only 0.002 RMS noise contrast, while those on the right [(B), (D) and (F)] bave 0.046 noise contrast. The top couple

[(A) and (B)] have spurious components in 0 phase, the middle couple [(C) and (D)] have no spurious harmonics and the bottom

couple [(E) and (F)] have spurious harmonics in /2 phase. Adding noise makes all images harder to recognize, particularly
when the spurious components have not been phase-shifted (B).
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FIGURE 4. The temporal sequence of image presentation for the face and letter recognition experiment. Signal and noise were
displayed on alternate frames, at 170 frames/sec. Before of each trial, the contrast of the noise was maximal (0.2) and the signal
attenuated by 2 log units, to 0.0015 for the faces, and 0.004 for the letters. At the beginning of each trial (time=0 msec), the
signal was faded in and the noise faded out exponentially, both at 0.1 log units every two frames. The signal reached maximum
contrast (0.15 for faces, 0.3 for letters) after 40 frames (230 msec). The noise continued to decrease only until it reached the
appropriate level for that trial. The dashed lines show an example for high contrast noise, 0.1, and the dotted line for a contrast of
0.02. The display remained constant for I sec after the signal had reached maximum contrast, then the signal decreased and the
mask increased to their initial values. After the subject had responded, a new sample of noise was displayed, and the procedure
repeated after a short pause.

at an appropriate rate. Figure 7 shows examples of coarse
quantization of the letter R. The original letter is quite
recognizable after heavy blurring, but not after coarse
quantization to an 8x8 array (A). As before, phase-
shifting the spurious harmonics by either 7 (B), /2 (C) or
—n/2 (D) restores recognizability.

Methods

Subjects were required to recognize letters from a
possible six (C, D, K, N, R or S). To minimize local
recognition cues, the letters were displayed at five
different orientations (between =60 deg) and four
different positions, and could be in positive or negative
contrast (total of 6x5x4 x2=240 images). The letters
were 128 x 128 pixels, taken from the Times font of the
Silicon Graphics, lowpass filtered (4.2 c/picture width),
scaled to span the 256 grey levels and quantized to 8 x §
blocks. The average RMS contrast on the screen for the
letters was 0.3. The remaining details of image proces-
sing and psychophysical procedures were identical to
those for the faces.

Results

Figure 8 shows the thresholds for recognizing letters
(from a set of six) as a function of phase of the spurious
harmonics. As with face recognition, performance (at

58% criterion) was severely impaired at O phase,
recovering to the performance of the blurred images
(dashed lines) at phase displacements of 7. The effects
here are larger than those for face recognition, possibly
because there was less partial information available to aid
subject guessing, and because the blocks were larger.

COARSE QUANTIZED SINUSOIDS

The results so far indicate that when the low spatial
frequencies are in phase-congruence with those at higher
scales they are “captured” by the grid like organization of
the higher scales, and cannot be accessed independently.
To study better the mechanisms of the capture, we
devised a more simple stimulus with only two low-scale
harmonics that can be manipulated separately. We derive
our stimuli from the checkerboard, which is equivalent to
two crossed diagonal sinusoids, quantized at \/ 2-times
the spatial frequency of the sinusoids. The diagonals can
easily be seen by blurring the checkerboard, or viewing it
from a distance. However, when the checkerboard is not
blurred, the sinusoids are “captured” by the high spatial
frequencies, and the diagonal orientations are not seen.
Here we investigate the role of high-frequency phase on
visual capture, by manipulating separately the sign and
contrast of the two fundamental harmonics, and asking
observers to indicate the predominant orientation. The
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FIGURE 5. Two examples of how recognition performance varied
with signal strength. Filled circles refer to images with spurious
components unchanged [like Fig. 1(C)], and open squares to images
with spurious components shifted by = [like Fig. 1(D)]. The abscissa
plots the RMS contrast of random blocked noise. Performance was
better for the n phase-shifted stimuli at all noise contrasts. The fitted
curves are cumulative gaussians, described by Eq. (1), bottoming out at
the guessing level () of 17% (dotted line). There is a clear difference,
not only in the mean of the fit, but also in the slope. The short-dashed
line shows 58% performance (s = sp) of Eq. (1), and the long-dashed
line 74% performance, half a standard deviation higher (s = 54 + 6/2).

rationale behind this approach is that if one of the
components is captured by the higher frequencies, it will
not contribute to the perceived orientation.

Methods
The original image
maximum contrast, of

was an 8 x8 checkerboard of
128 x 128 pixels. Viewed from

RMS Noise Contrast (%)
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I m, the display subtended 5 deg (as before), so each
square subtended 37.5 arc min. Figure 9 shows examples
of a checkerboard [Fig. 9(A)] and the stimuli derived
from it. Figure 9(B) shows a highpass filtered checker-
board (with the fundamentals removed), similar to the
“spurious harmonics” of the blocked faces or letters.
Figure HC) shows the two fundamental harmonics.
However, in this image, the +45 deg (right tilting)
fundamental has been contrast-reversed, to probe the
effects of high-frequency phase on capture. Figure 9(D-
F) were constructed by adding to the low harmonics of
Fig. 9(C) the higher spurious harmonics, phase-shifted by
either 0, 7/2 or —n/2, respectively.

To quantify the effects of phase on capture, we varied
the relative contrast of the two fundamentals to seek a
null point in the perceived orientation. One fundamental
sinusoid was left unaltered and the other was contrast-
reversed (phase-shifted by =): Fig. 9(C). The higher
harmonics were also left at their original contrast, but
their phase was varied over a range of =+, before
resumming to the low-frequency pattern. In practice, the
pattern was “flipped” at random from trial to trial
(inverted symmetrically around the vertical midline), so
either the unaltered or the contrast-reversed fundamental
could be oriented to the left or right. The subject’s task
was to indicate whether the dominant tilt was +45 deg.
The contrast of the contrast-reversed fundamental varied
depending on response, tending towards the contrast to
support ambiguous apparent orientation (guided by the
QUEST routine, with +2 dB of randomization). At least
five different conditions were randomly interleaved

-1/ 2 0

-t

-n/2 0

T -

PHASE (rad)

FIGURE 6. Recognition performance for two naive observers for various phase shifts. Two levels of sensitivity are reported,

one corresponding to 58% correct (short-dashed line of Fig.

5), the other to 74% correct (long-dashed line of Fig. 5). The

ordinate shows the contrast of the noise at threshold, with the arrow indicating the average RMS contrast of the blocked faces.
The dashed and dotted lines show 58% and 74% sensitivity thresholds to blurred faces.
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FIGURE 8. Threshold performance for letter recognition for two naive observers, for various phase shifts. Threshold was taken
as the contrast of noise to yield 58% correct responses. The arrow indicates the average RMS contrast of the blocked letters. The
dashed lines show the sensitivities for the blurred letters, with no spurious components.

during a single session, minimizing response stereotyp-
ing.

About 200 trials were measured for each condition,
over four or five experimental sessions. Again the results
were fitted with Eq. (1), with s describing log-contrast
and guessing rate y=0. For the contrast sensitivity
measurements of the masking studies, the test (sinewave)
was interleaved with the mask so its contrast (reported as
Michelson contrast) could be controlled on-line. The
results were also fit with Eq. (1), with y=0.5 (two-
alternative, forced-choice).

Results

The effects of the phase of the spurious frequencies on
apparent orientation are clearly illustrated by inspection
of Fig. 9. The standard checkerboard appears as a
vertically-horizontally organized structure, although
there is actually no energy along those orientations.
When one of the fundamentals is reversed in contrast
(leaving the higher harmonics at phase 0), it is seen
clearly in transparency against the rest of the pattern, and
the orientation of this pattern seems to dominate the tilt of
the stimulus. Now, when the phase of the higher
harmonics is changed, for example by 7n/2 as shown in
Fig. 9(E), both are seen in transparency. When the phase
of the higher harmonics is shifted by —n/2 {Fig. 9(F)], so

all harmonics are in peaks-add phase, the orientations are
again balanced, but without transparency.

The effects of changing the phases of the higher
harmonics can be illustrated quite dramatically by
photographing or photocopying Fig. 9(B) and Fig. 9(C)
onto separate transparencies, and superimposing them on
an overhead projector. Slowly sliding one over the other
changes the phase coherence from one fundamental to
another, changing the apparent orientation of the pattern.
Note that if the patterns are moved too quickly, the
orientations no longer appear to vary, indicating that
capture takes some time.

Figure 10 shows the percentage of trials where the
perceived orientation was given by that of the reversed-
contrast fundamental, as a function of its contrast, for five
different conditions of higher harmonic phase. The
condition with the blurred stimuli (no higher harmonics)
is shown by the thick curve (without data points). This
serves as a control and gives an idea of the precision of
the subjects at this task. When the contrasts of the two
sinusoids are matched (dashed vertical line), subjects
report the orientation of the reversed-contrast funda-
mental on 50% of the trials. As the contrast of this
fundamental increases, so does the proportion of trials
where it dominates the perceived orientation.

When the higher harmonics are phase-shifted by + /2

FIGURE 7 (opposite). (A) Example of a letter “R”, coarse quantized into 8 x 8 blocks. In this example the letter is vertical, but

others were rotated by +15 or + 30 deg. The average RMS contrast was 0.4. (B), (C) and (D): The blocked letter with the

spurious harmonics phase-shifted by =, +7/2 and —7/2, respectively. (E) and (F) show local energy simulations of (A) and (B).

The thin black lines are the peaks in local energy at 24 c/picture width, and the thick grey lines at 6 c/picture width (see section
on Simulation of results.
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FIGURE 10. Per cent of trials on which the orientation of the pattern
was reported as being the same as that of the reversed-contrast
fundamental, for various phase shifts of the higher components [Fig.
8(D)—(F) show examples of the stimuli]. The sigmoid curves are best-
fitting cumulative gaussians, following Eq. (1) with y = 0. The thick
sigmoid is the fit to the data of apparent orientation of the lowpass
pattern [Fig. 8(C): data points not shown]. The vertical dashed line
indicates the Michelson contrast of the unaltered fundamental, so at
this point the contrasts of the two fundamentals were balanced. As may
be expected, the averages of the curves with no higher frequencies pass
through this point, as do the curves for the n/2 phase-shifted higher
harmonics. The remaining curves are systematically displaced along
the abscissa, depending on the phase shift of the higher components. At
0 phase shift, the contrast-reversed fundamental dominated at all
contrasts, even when it was physically absent (in agreement with Burr
et al., 1986).

(falling between the phases of the two fundamentals), the
results are similar to that of the blurred stimuli, both in
null point and width of psychometric function (the curves
of MCM are actually superimposed). This shows that
adding high-frequency components to the pattern im-
poses no extra difficulty for the subjects to determine
prevailing orientation. Varying the phase shift of the
higher harmonics systematically moves the curves along
the contrast axis. For phase shifts near O (filled squares),
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FIGURE 11. Contrast of the contrast-reversed fundamental at which
the apparent orientation was balanced (the 50% point of the fitted
curves of Fig. 9), as a function of the phase shift of the higher
components. The horizontal dashed line shows the contrast of the
unaltered fundamental. The thick continuous curve shows the
prediction from the local energy model, as described in Fig. 14, for a
threshold orientation bias of 2, and the short dashed line for an
orientation bias of 1.4.

the phases of the higher harmonics are similar to that of
the unaltered fundamental, so it is “captured”, leaving
only the reversed-contrast fundamental to dominate the
perceived orientation at all contrasts. Indeed, at phase 0,
the null is not possible at any contrast: even when the
contrast is zero, the apparent orientation is given by this
fundamental that is not physically present (see also Burr
et al., 1986). For phase shifts greater than n/2, the phases
of the higher harmonics are more similar to that of the
reversed-contrast fundamental, capturing it. The unal-
tered fundamental now dominates the apparent orienta-
tion, so the contrast of the other fundamental needs to be
raised to produce a balance in orientation.

Figure 11 plots the amount of contrast of the reversed-
contrast fundamental required for the orientation null
(50% points of psychometric functions such as those of
Fig. 10) as a function of phase. The results of both
observers are very similar, showing the clear, almost
linear relationship between contrast and phase.

Masking

The original explanation for the blocking effect was
“critical band masking” of the low spatial frequencies
carrying the image information by the higher spurious
frequencies. The fact that the effects depend so critically
on phase cast some doubt on this assertion, but the
possibility remains that the masking effects themselves
are phase specific. We tested this idea by measuring

FIGURE 9 (opposite). Examples of various images derived from the checkerboard. (A) An 8 x 8 checkerboard. (B) A highpass
filtered checkerboard (ideal, above 5.7 c/picture). (C) A lowpass filtered checkerboard, with the 45 deg fundamental reversed in
contrast (phase-shifted by r). (D) The unfiltered checkerboard with the 45 deg fundamental reversed in contrast (equivalent to
the sum of (B) + (C). (E) and (F) Same as (D), but with the higher harmonics phase shifted by +7/2 and —=/2, respectively. If (B)
and (C) are photocopied onto separate transparencies and superimposed on an overhead projector, the prevailing orientation of
the pattern can be changed from 45 to —45 deg by sliding image (B) by one block width (half a cycle of fundamental).
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FIGURE 12. Contrast sensitivity for discriminating the orientation of a
single fundamental of a checkerboard, for various phase shifts of the
higher components (the orthogonal fundamental was removed). The
continuous and dashed horizontal lines show the thresholds in the
absence of any higher components for MCM and DB, respectively.

detectability of a sinusoid, in similar conditions to those
used for the apparent orientation judgements. In this
experiment, the test was a single sinusoid, oriented
+45 deg, either on its own or in the presence of the
higher harmonics, phase-shifted as described in the
previous section. The subjects were required to detect
the orientation of the test, in a two-alternative, forced-
choice procedure. Contrasts were again guided by the
QUEST procedure, and thresholds obtained by fitting
gaussians to the probability of seeing curves [Eq. (1) with
y = 0.5].

The results are shown in Fig. 12. It is clear that at all
phases, the higher harmonics had very little effect on
contrast sensitivity. The sensitivities for all phases were
very similar to those measured without the higher
harmonics. Thus, the higher harmonics affect the
apparent orientation of the pattern, not by “masking”
the visibility of the lower harmonics, but by more subtle
processes.

SIMULATION BY THE LOCAL ENERGY MODEL OF
THE TRANSPARENCY EFFECTS

In this study we have shown that changing the phase of
the spurious high spatial frequencies’ harmonics greatly
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reduces, or destroys completely, the blocking illusion:
after a large phase shift, the stimuli are perceived as two
independent structures in transparency, with no “capture”
of the low frequencies. In this study, the phases of the
entire spectrum of the spurious frequencies were
displaced together, so the relationships between the
phases of various harmonics remained unaffected. The
location where all the phases were most similar was
therefore unchanged (see Morrone & Burr, 1988), so the
energy functions at high-scales were the same at all
phases. Therefore, the localization by the local energy
model of features at high-scales is not affected by this
transformation. However, the energy map of the medium
and low-scales that respond to both the signal and the
spurious frequencies will be greatly affected by the phase
manipulations, as local energy is maximum at points of
the image where the arrival phases of various compo-
nents within its bandwidth are most similar (see Morrone
& Burr, 1988). Changing the phase of some of the
components breaks the phase congruence, changing
greatly the local energy map.

Figure 13 shows in three dimensions the energy
functions obtained for different size and orientations of
the linear operators, for one period of the normal
checkerboard pattern and for the pattern with the
+45 deg fundamental reversed in contrast (marked by
the arrow in Fig. 13). The energy functions have been
computed as the square-root of the sum of the square of
the response of the even and odd filters (filter equation in
caption). The filters are broadband both in orientation and
size of about +45 deg and + 0.28 log units, respectively
at half-height.

For the checkerboard pattern, energy functions at all
scales have clear maxima along the horizontal and
vertical edges. The ridges are sharper for the high than the
low-scale, but all maxima are spatially coincident.
However, for the pattern with the contrast-reversed
fundamental, there is no such correspondence between
scales. The energy functions at all orientations at the
highest scale, and at all the scales of —45 deg orientation,
are very similar to those of the normal checkerboard
pattern. However, all the remaining functions differ
markedly: the +45 deg energy functions (at 12 and 6
¢/picture width) have clear peaks corresponding to the
centre rather than the edges of each square, almost the
inverse of the pattern of energy at the orthogonal

FIGURE 13 (facing page). The local energy derived from operators of various scales and orientations illustrated for a small
section (four squares) of normal checkerboard (right) and checkerboard with the 45 deg contrast-reversed fundamental (left),
computed as described in the text. The form of the even and odd linear filters (Gg and G)is given by:

Ge(fo /i) = exp I:— (

(nf/5o)” £ ”

2 2
202 20}

where f; and f, are the frequencies orthogonal and parallel to the orientation of the operator, f,, is the peak spatial frequency and

o, and ¢, determine bandwidth along the axes of the operator, set to produce a spatial frequency bandwidth of +0.28 log units

and an orientation bandwidth of +45 deg. We used 16 operators, spanning four spatial scales (3, 6, 12 and 24 ¢/picture width,

corresponding to 0.75, 1.5, 3 and 6 c/horizontal-period) and four orientations (0, +45 and 90 deg). With the unaltered

fundamental, the peaks in local energy follow the outline of the checks, at all scales and orientations. When the +45 fundamental
was contrast-reversed, the energy maps for the low and medium scales at 45 deg change considerably.
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orientation. At 6 c/picture, the horizontal and vertical
orientations show ridges that are dislocated by a quarter
of period relative to the corresponding functions of the
normal pattern.

The information given by the energy function can be
summarized as follows. For the pattern with the contrast-
reversed fundamental, maximum energy is produced by
large operators oriented along the direction of this
fundamental, at locations away from the edges of the
pattern. This pattern should dictate a low-frequency
structure different from the one imposed by the smaller
operator, with a prevailing orientation at +45 deg. The
other consequence is that the structure imposed by the
smaller operators does not have corresponding energy at
larger operators: the horizontal and vertical border should
comprise only high-frequencies and should be perceived
as transparent “Craik-O’'Brien” edges. This would
explain the transparency effects that we see.

Quantitative predictions

The qualitative conclusions reached by inspecting the
energy functions can be formalized to make quantitative
predictions of the psychophysical data, after defining how
the multiple functions at various scales and orientations
interact to define the spatial structure of the stimulus. We
assume that separate and independent structures are
defined at each scale, and that these structures are given
by combining the energy distributions at the various
orientations, with the following two-step procedure. For
each pixel, local energy is evaluated at all orientations,
and the most responsive operator is chosen. If the point is
a local maximum along the orientation orthogonal to that
of the operator, it is marked as an oriented feature, with
orientation matching that of the operator. The type of the
feature (edge-line) will be given by the relative strength
of the even and odd symmetric linear filters. This strategy
has been widely tested in other situations and shown to
produce valid and reliable results (Perona & Malik,
1990).

Figure 14(A, C, E) shows the energy maxima marked
at two different scales: the 24 c/picture (black thin line)
and the 12 c¢/picture (grey thick lines). Figure 14(B, D, F)
shows the orientation of the features marked at the 12
c/picture scale for the +45 (red vectors) and —45 (yellow
vectors) orientation. For clarity, the horizontal and
vertical orientations have been represented with black
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points. For the normal checkerboard [Fig. 14(A, B)] the
peaks at the two scales overlap in space and coincide with
the edges of the squares. For the pattern with one
fundamental reversed in contrast [the 45 deg fundamental
for the examples in Fig. 14(C and D)], there is still some
correspondence between the features at the two scales
along the edges of the squares. However, additional clear
features emerge in the internal region of each square
corresponding to the orientation of the contrast-reversed
fundamental [red vectors of Fig. 14(D)]. The model
would predict a structure of horizontal and vertical edges
enclosing bars oriented along 45 deg, together with a
—45 deg structure only at the vertex of the squares
(yellow vectors). This prediction is very close to what is
actually perceived.

For the pattern in Fig. 14(D) (corresponding to the
stimulus labelled as 7 in the experiment described in the
previous section), we measured how much the amplitude
of the —45deg fundamental should be increased to
balance the orientation bias given by the +45 deg
oriented features. Figure 14(E and F) show the simulation
obtained for a pattern that has a contrast near the
psychometric setting for balanced orientation (see inset).
No features at scale 12 c/picture have horizontal or
vertical energy, but only +45 deg. It is apparent [Fig.
14(F)] that the —45 deg orientation prevails, as it has
more features belonging to that orientation associated
with points of higher energy (represented in the figure by
the length of the vectors).

The thick continuous, and short-dashed lines of Fig. 11
show the predictions of the energy model for two
different thresholds (described below). For each type of
stimulus (phase shift of higher harmonics), each scale
below 24 c/picture (3, 6, 12) and all possible contrasts of
the contrast-reversed fundamental, the feature maps were
calculated to yield the “orientation bias”, reflecting the
ratio of local energy of the marked features at the two
principal orthogonal orientations. We defined this value
as the average of two ratios, that of the maximum energy
at the two orientations and that of the average energy at
the two orientations. We then calculated the contrast
value to produce a particular orientation bias at all scales.
The thick continuous lines of Fig. 11 show the results for
a threshold of 2, and the short-dashed lines for a threshold
of 1.4. The agreement between the data and predictions
are good for both values. Although the choice of the

FIGURE 14 (facing page). Illustration of how the apparent orientation thresholds were simulated from the local energy model
for three patterns: a simple checkerboard [(A) and (B)], a checkerboard with the +45 deg contrast-reversed diagonal [(C) and
(D)1, and for this pattern with the unaltered fundamental at —45 deg of higher contrast [(E) and (F)]. The patterns are illustrated
by the insets of (B), (D) and (F), respectively. The simulations on the left show the peaks in local energy functions of all four
orientations, illustrated by the thick grey lines for the 12 c/picture width (3 c/horizontal-period) scale, and by the thin black lines
for 24 c/picture width (6 c/horizontal-period). For (A) the energy at both scales all falls along the edges of the blocks, while for
the images with the contrast-reversed fundamental much of the energy of the lower scale falls in between. The right-hand figures
indicate the magnitude and the orientation of the energy at the peaks for the 12 c/picture width scale: the yellow vectors refer to
the —45 deg operator, the red vectors to the +45 deg operator, and the black dots to vertical and horizontal operators. For the
oblique orientations, vector length indicates magnitude (but not for the vertical and horizontal orientations, to avoid clutter). The
orientation bias was calculated as the average of two ratios: the ratio of the maximum vector of each diagonal, and the ratio of
the average vector length of each diagonal. For (D) the +45 deg vectors clearly dominate, while for (F) the —45 deg orientation
prevails by a factor of two.
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threshold orientation bias is somewhat arbitrary, it is
important to note that this is the only free parameter
required. Varying the criterion over a modest range had
very little effect, except for phase shifts near +7x. At
phase 0, the simulation predicts an orientation bias of 0 in
the absence of the reversed-contrast sinusoid, indicating
that no features were oriented along the unaltered
diagonal, so the missing diagonal always dominates
perceived orientation.

These simulations were obtained using filters of
+ 45 deg bandwidth in orientation and + 0.28 bandwidth
in spatial frequency. However, the pattern of simulation
results was not peculiar to the choice of the filters, as
similar results were obtained with different spatial
frequency bandwidth (from +0.2 to 0.42 log units) with
the same length-to-width aspect ratio. However, for
narrower bandwidths more operators were necessary to
span the different scales and orientations of the image
spectra. Decreasing the width to length aspect ratio also
increased the number of oriented filters necessary for
accurate feature localization (see Perona & Malik, 1990).

Simulation of blocked letters

The same model was used to generate the feature maps
of the quantized letter of Fig. 7. Figure 7(E) shows the
simulation for the stimulus at phase 0, while Fig. 7(F)
shows that for phase n. The features marked at the higher
scale (24 c/picture) are aligned along the horizontal and
vertical edges of the original blocks for both stimuli.
However, features of the middle scale (6 c/picture) are
aligned along the block borders only for in-phase
stimulus. For the out-of-phase stimulus, the features at
the two scales are quite separated. Again, the model
makes a clear qualitative prediction that the out-of-phase
stimulus should be seen as a letter “R” simultaneously
superimposed on a grid structure.

It is interesting that the superposition should give rise
to a transparency effect. The edge structure is present
only at high spatial frequencies, so each block should be
perceived as Craik—O’Brien edges. With normal course
quantized images, the two feature maps correspond in
space, so each high-frequency edge is in direct corre-
spondence to the low-frequency one, so they should be
perceived as solid and opaque. This leads to a suggestion
about the nature of transparency. If we assume that
separate feature maps are built at each scale, then the
perception of transparency or solidity could depend
entirely on whether there is correspondence between the
feature maps at each scale. We will take this point up
again in the Discussion.

DISCUSSION

Effects of blocking on recognizability

Although the blocking illusion of Harmon and Julesz is
one of the strongest visual illusions, it has proven difficult
to obtain quantitative measures of the strength consistent
with the qualitative magnitude of the effect. The main
reason for this probably arises from experimental
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difficulties. For small images, blocking certainly reduces
recognizability beyond that expected by blurring out the
higher frequencies (Uttal er al., 1996a), but as the
spurious frequencies are near the resolution limit, the
effects would be expected to be smaller than for larger
images. The use of larger images overcomes this
problem, but creates others. The information about the
face will be at very low absolute spatial frequencies (in
cycles per degree). Brief exposure (customary for
psychophysical measurements) greatly enhances sensi-
tivity for low spatial frequencies at the expense of high
frequencies (eg. Burr, 1981), boosting the image
information. Furthermore, abrupt removal of a low-
frequency signal leaves a vivid negative afterimage for
some time after (e.g., Burbeck, 1986), that could be used
for recognition (especially for letters, where the dark
letters are as recognizable as bright letters).

We attempted to control for these problems by using
quite large images, and not presenting them abruptly, but
fading them in and out gradually. More importantly, they
were gradually exchanged with random noise during both
the rise and fall of presentation, which should have
helped to mask the afterimage left by the low-frequency
image. During the development of this technique, we
found that recognition of blocked images was very easy,
unless we took these efforts to eliminate artefacts.

Another difficulty with this class of experiment is that
for a finite set of images, images may be recognized on
the basis of some simple learned cue, such as a
particularly white block in a certain position, etc. Indeed,
discrimination of some coarse quantized images is
particularly simple (Uttal et al., 1996a). To minimize
this possibility, we created a very large image set of both
letters and faces, hoping to disrupt as many local cues as
possible. However, particularly for the face recognition,
subjects sometimes reported being able to make some
discriminations on the basis of local cues. For this reason
we suspect that the 74% recognition criterion is more
valid than the 58% criterion. Indeed, this is why no
results are shown for face recognition for the authors, as
during development of the experimental techniques, they
became over-familiar with the local cues in the image set.
But in any event, it should be borne in mind that our data
may underestimate the effects of blocking for all these
reasons.

The sample psychometric curves of Fig. 5 show the
importance of measuring thresholds, rather than simply
per cent correct in a given condition. Without the addition
of noise, performance approached 100% correct for both
types of stimuli, under these conditions (with long
exposure and unlimited response time). One may be led
to conclude that blocking had no effect there. However,
once the task was made more difficult by adding noise,
therc was a clear difference in performance. However,
more importantly, this technique gives a quantitative
measure of the magnitude of the effects, that cannot be
calculated from simple per cent correct measures at a
given difficulty level. Other strategies of image degrada-
tion, like those used by Uttal ef al. (1996a, b) may also be
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useful here, but it is important that the degradation used
as the measuring parameter should not interact with the
effect of blocking.

The results show not only that blocking reduces
recognizability considerably, but that this effect was
affected drastically by phase shifts of the spurious
frequencies. This is obvious both from inspection of
Figs 1, 2 and 3, and from the quantitative measurements.
The effects of phase shift were at least an order-of-
magnitude (sometimes greater), and phase shifts of =
brought recognizability to levels near those of the blurred
images, both for letters and for faces. It is important to
realize that a phase shift of n is not like “phase-
scrambling”, in that it does not alter the distribution of
high-frequency information over the image. The edges of
the blocks remain where they were, of the same
magnitude (but opposite sign) of contrast. The n/2 shift
also does not affect the local RMS contrast (from
Parseval’s theorem), although it does increase the peak-
to-peak Michelson contrast.

These results do not fit with the “critical band
masking” theory of Harmon & Julesz (1973), as simple
masking effects are not greatly affected by phase (e.g.,
Campbell & Kulikowski, 1966). Indeed, under the
conditions of this experiment, we show that the presence
of the higher harmonics of the coarse quantized sinusoid
has virtually no effect on the detectability of a simple
sinusoidal pattern, at any phase of the higher harmonics.
We can, therefore, safely conclude that the wvast
impairment of visibility of the faces and letters does
not result from simple critical-band masking, in which
the low frequencies are rendered invisible to the visual
system, but by more subtle means, discussed below.

The checkerboard as a coarse quantized image

The checkerboard has long provoked interest for vision
research, largely because of its vertical-horizontal
appearance, despite most of the Fourier energy being
along the diagonals (eg De Valois ef al., 1979). Our
previous work showed that removal of one of the
diagonals altogether, creates a pattern with a strong
sense of orientation along the orientation that contains no
Fourier energy (Burr et al., 1986). In that study we
showed that the conditions under which the “missing”
orientation dominates parallel closely those for the
detectability of the fifth harmonic, suggesting that there
need be at least two visible spurious harmonics for the
illusion. The idea of local energy was not developed at
the time of that study, but we would now say that the
minimum of two higher harmonics was necessary to
produce a peak in local energy to create the feature that
structures the image into blocks, against which the
“missing” fundamental is seen in transparency. Interest-
ingly, this spatial phenomenon has a strong temporal
analogy, the so called “non-Fourier motion” (Chubb &
Sperling, 1988), where motion can be seen in a direction
where there is no power in the Fourier spectrum. Both
phenomena elicit a strong sense of transparency (see
Fleet & Langley, 1994).
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In the present study we have used a similar pattern to
measure the effects of the phase of the spurious
components, by asking observers to assess which
diagonal predominates the perceptual appearance. The
main advantage of this technique is that it is possible to
collect large amounts of clean data for quantitative
simulation. Although the observations are to some extent
subjective, there was very good agreement of the results
between subjects, and from one session to another (see
Figs 10 and 11). We have reported detailed data only for
two observers, but have also measured the effects on
many colleagues, initially naive as to the goals of the
research, and all giving similar results. Most readers will
agree from inspection of Fig. 9 that the effects of phase
on apparent orientation are quite impressive.

Although the checkerboard can be considered to be a
coarse quantized image, it is different from standard
quantized images in at least one important respect: all of
the “signal™ is contained within two single harmonics of
the same spatial frequency, about an octave lower than
the lowest spurious frequency. This facilitates quantita-
tive modelling, as there is no uncertainty about which
frequency band contains the image information. One the
other hand, with more complex blocked images, it can not
be assumed a priori which band of frequencies contains
most information, nor will the influence of the spurious
components be the same for all spatial frequencies of the
signal.

Simulation of results by local energy model

For the reasons mentioned above, it was possible to
obtain accurate predictions for the appearance of the
phase-manipulated checkerboard. With only one free
parameter, we were able to predict with considerable
accuracy the psychophysical measurements of apparent
orientation. The procedure was simply to search for
oriented maxima at all scales, and vary the contrast of the
contrast-reversed fundamental until a threshold was
reached.

With more natural blocked images, such as faces and
letters, the situation is more complicated, and therefore
more difficult to model quantitatively. However, the
same principles probably hold. Figure 7(E and F) show
the feature maps at high and medium scales, for the
original and phase-shifted images. For the phase-shifted
image, the medium scale more or less describes the letter
“R”, while for the original blocked image the feature
maps at this scale follow the outlines of the blocks. At
this scale, the spurious components interact with the
components defining the letter and, providing that the
phases are not too different, the spurious harmonics will
dominate the feature map. Shifting the phase of the
spurious harmonics breaks the phase coherence within
this scale, allowing the peaks to be dictated by the low
spatial frequencies. The fact that the maps at the two
scales are so distinct suggests that both images should be
seen simultaneously, as indeed they are, in transparency.

In other words, we are suggesting that the spurious
components affect visibility because they interact with
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the signal within a given spatial scale, affecting the peaks
of local energy. Each scale generates an independent,
size-labelled feature map. Spatial correspondence be-
tween these symbolic representations at different scales
of appropriate contrast produces the perception of an
opaque and solid edge that segments the image. For the
phase-shifted image, the features at the low-scale do not
coincide with that of the block structure, but with the face
or letter [Fig. 7(F)]. The features of the high-scale map do
not have corresponding features at low-scales, and are
therefore perceived as highpass features, in transparency.
The low and high spatial frequency maps provide an
independent representation, both of which emerge as
independent perceptions. This line of reasoning is very
similar to that proposed by Marr & Hildreth (1980),
suggesting that we do not have perceptual access to the
feature maps at each scale, but only after they have been
combined. Only if there is disagreement between two
scales will the two percepts be seen simultaneously. The
major differences between our approaches are the means
by which one scale may influence another (see Morrone
& Burr, 1993), and in the intrinsic non-linearities in
feature marking.

The model simulations explain why the phase shift
restores visibility, and manages to predict accurately the
conditions under which it does. However, we cannot
exclude the possibility that other mechanisms are at
work, especially for very blurred images (well below the
range considered here), where the local energy model
marks very few features. For example, the appearance of
simple combinations of low-frequency patterns of
different orientation or spatial frequency are not
predictable by local energy (Georgeson, 1992, 1994). It
is important to emphasize that our model does not assume
that the local energy feature map is the only description
of the image, but serves as one source of information for
structure and segmentation. Another important source of
information, particularly at very low-scales, could be
derived directly from the physical luminance distribution,
with very little feature processing (Burr & Morrone,
1994, p. 166; Pessoa et al., 1995). The results of this
study suggest that information derived directly from the
luminance distribution can be used for recognition
purposes, but only in the absence of other competing
feature-based information that will dictate image seg-
mentation.

We have chosen to use the local energy model of
feature detection to model the present results, as it has
been implemented in two dimensions, and readily lends
itself to quantitative analysis. However, it is quite
feasible that other feature-based models using the
principles of MIRAGE (Watt & Morgan, 1985) or
MIDAAS (Kingdom & Moulden, 1992) would also
work. For example, the rules for synthesizing the
symbolic description of a solid edge from separate
descriptions at different scales are very similar to those
that form the basis of MIDAAS (and quite different from
that of Marr & Hildreth, 1980). However, the good
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qualitative and quantitative performance of our own
model is most encouraging.

The nature of transparency

One of the more interesting facts to emerge from this
work is that changing image phase often caused the
sensation of transparency. Transparency has been studied
extensively by Metelli (1970, 1974) earlier this century,
and more recently by Adelson (1993) and others.
However, almost all studies have employed simple
smooth unpatterned stimuli, such as celluloid paper, or
computer equivalents, from which a clear set of rules has
been developed to predict when surfaces will appear to be
transparent or otherwise. The transparency discussed
here is somewhat more complicated, where two patterns
are seen simultaneously in the same position, one of them
appearing transparent.

We would like to suggest a simple explanation for the
transparency phenomena reported in this paper. Trans-
parency can be explained by the synthesis of the symbolic
feature maps. When an edge marked at high-scales
corresponds in location and amplitude with one marked
at low-scales, it is labelled as opaque. Only one object is
perceived at that location. Otherwise, if the spatial
correspondence is broken, so that only the edge at high-
scales exists, it will be perceived as a transparent edge.
The regions are still seen as constant brightness (like the
Craik—O’Brien edge), but any other patterning in the
region will be perceived simultaneously. This possibility
is currently being investigated with more traditional
images, such as those used by Metelli (1974).
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