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Abstract— Rapid eye movements (REMs) are a peculiar and 

intriguing aspect of REM sleep, even if their physiological 

function still remains unclear. During this work, a new 

automatic tool was developed, aimed at a complete description 

of REMs activity during the night, both in terms of their timing 

of occurrence that in term of their directional properties. A 

classification stage of each singular movement detected during 

the night according to its main direction, was in fact added to 

our procedure of REMs detection and ocular artifact removal. 

A supervised classifier was constructed, using as training and 

validation set EOG data recorded during voluntary saccades of 

five healthy volunteers. Different classification methods were 

tested and compared. The further information about REMs 

directional characteristic provided by the procedure would 

represent a valuable tool for a deeper investigation into REMs 

physiological origin and functional meaning. 

I. INTRODUCTION 

Rapid eye movements (REMs) represent a peculiar 

feature of REM sleep. They episodically occur mostly 

grouped in bursts and correspond to rapid saccades, similar 

to those occurring in the awake state when visual inputs are 

absent but imagined [1].  

In normal subjects, REMs timing seems to be governed by 

a nonlinear deterministic process [2]; moreover, their time 

density increases from early to late REM sleep episodes and 

it shows a cyclical pattern within each REM episode with 

periodical peaks, the first one occurring 5-10 minutes after 

REM sleep onset. Since the discovery of REM sleep, REMs 

have been associated to the scanning of dream scene. From 

then on, many authors have highlighted several issues 

concerning this hypothesis, and many conjectures on their 

functional meaning have been proposed. However, REMs 

physiological function remains controversial and poorly 

understood and this makes these ocular movements and their 

particular organization during the night an intriguing sleep 

aspect to be analyzed. Several studies on humans, have 
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shown how some REM parameters, such as the REM density 

and REMs tendency to cluster into bursts, may have a 

clinical relevance [3].  

For this reason, we have developed a fully automated 

procedure aimed at identifying each individual REM [4], 

even within bursts, in order to characterize the whole REM 

activity in terms of global aspects (REMs number, REM 

density etc.) and of their temporal organization (number and 

characteristics of bursts). In [4], the detection procedure was 

used for develop a new adaptive-filter method for REM 

ocular artefact correction: this method modifies the signal, 

only during the EEG epochs in which a movement is 

detected and produces improved reconstructed EEG signals 

compared to the state of art. 

In order to complete the REM analysis we present a 

classification stage aimed at discriminating the main spatial 

direction of each REM. To achieve this purpose, an ad hoc 

dataset has been populated using data obtained from 

electrooculographic (EOG) recordings. A list of possible 

classification features has been drawn up. Different 

classification methods have been then applied and for each 

one the optimal subset of features has been extracted using 

the Pudil’s sequential forward floating selection method 

(PSFFS) [5]. The dataset and the supervised classifiers is 

described in section II. The performance of the classifiers 

obtained during a cross-validation stage will be illustrated 

and compared in section III. 

II. METHODS 

A. Experimental Settings 

The dataset for training and validation of the supervised 

classifiers has been experimentally obtained by using EOG 

recordings from five healthy volunteers (24-35 years old), 

instructed to perform eye movements in response to a trigger 

sound. In order to make the kinematics parameters as much 

similar as possible to REMs occurring during sleep [1], 

volunteers were kept in the dark, lying on a bed and with 

their eyes closed. Each participant was requested to start and 

end individual eye movements at the centre of visual field as 

expected during REM sleep and to perform eye movements 

in four main directions (vertical, horizontal, oblique and 

circular), defining the four classes of movements. A 128 

electrodes HydroCel Geodesic Sensor Net (HCGSN) and a 

Geodesic Net Amps 300 (GES300) system were used for 

signal recordings, keeping electrode impedance below 50 

kΩ. The HCGSN included electrodes for 

electroencephalogram, eye movements and face/neck muscle 
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contractions. Data were collected with a sampling rate of 

500 Hz, resolution of 24 bits, precision of 70 nV/bit (0.07 

μV), vertex Cz (in the international 10/20 system) as 

recording reference electrode. Two EOG bipolar derivations 

were extracted, representing respectively the horizontal 

(HEOG) and vertical (VEOG) component of the signal 

generated by the eyeball rotation. After acquisition, all data 

were 0.1-35 Hz band-pass filtered. 

The time location of each trigger was used to identify a 

series of reference points on the EOG signals, in order to 

mark onset and end of each movement. In this way, it was 

possible to extract the signals related to individual eye 

movements (trial) to be inserted in the classification dataset. 

Fig. 1 shows an example of the VEOG and HEOG trials for 

an eye movement from each class.  
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Figure 1.  VEOG and HEOG signals for an eye movement of each class 

(vertical, horizontal, oblique and circular).  

B. Classification methods  

Three different classification methods were tested and 

compared. The first one is the K-nearest neighbor algorithm 

(KNN): the classification of each new object is based on the 

classes of the k objects closest to it in the feature-space. As a 

case study, we adopt k = 5 and the Euclidean distance as 

metric [6].  

The other two methods are linear and quadratic 

discriminant analysis (LDA and QDA): they define a scalar 

projection of the multi-dimensional space of the features, in 

which the distances between the different classes are 

maximized. This is done under the assumption that each class 

has a multivariate normal distribution, whose statistical 

parameters are estimated from the dataset. Discriminant 

Analysis is referred as Linear when the covariance matrices 

of the classes are assumed to be identical, whereas is referred 

as Quadratic in the case of covariance estimates stratified for 

each class [7]. 

C. Features definition 

As candidate features for the classifiers, we took into 

account two main set of features. The first set groups the 

features derived from the spectral analysis of horizontal and 

vertical EOG signals. Features from the spectral analysis 

would allow taking into account the high frequency activity 

associated to REMs, such as muscle contraction correlates. 

The second one groups the features describing the trajectory 

of eye movement in the frontal plane (VEOG/HEOG plane). 

Describing the time course of each movement as a point 

moving thought this plane is very effective, and gives a 

direct idea of the directional properties of the movement.  

For each eye movement in the dataset, the features 

derived from EOG spectral analysis consisted in: 1) the 

power of VEOG and HEOG signals in five different 

frequency bands δ (0.5-4 Hz), θ (4-8 Hz), α (8-12 Hz), σ 

(12-15 Hz), β (15-25 Hz) and over the whole band of interest 

(broadband, 0.5-25 Hz); 2) the ratio between the vertical and 

horizontal power evaluated in the same frequency bands. 

The usage of this ratio took into account the fact that the 

power evaluated on single derivations (HEOG or VEOG) 

greatly depends on the amplitude of the movement and 

varies within subjects. Power values were expressed in 

logarithmic scale. 

For each individual eye movement in the dataset, the 

features derived from EOG trajectory analysis consisted in:   

1) The area within each trajectory defined from the onset 

to the end point of the movement (the trajectory is close 

since it starts from the centre of the visual field and come 

back to the centre). The area within the trajectory was 

normalized by the maximum absolute distance of the 

trajectory from the origin: the normalization was introduced 

in order to make the area independent from the movement 

amplitude. As intuition suggests, circular movements draw 

trajectories very similar to a circumference, even if irregular, 

because of cerebral activity volume propagation and 

different location of EOG electrodes from the ocular dipole. 

Circular trajectories always show a wider area compared to 

the more flattened ones generated by the other classes of 

movements, as can be noted in Fig.2. 

2) The analysis of trajectory variance performed with the 

Principal Component Analysis (PCA) applied on the VEOG 

and HEOG time sequences obtained for each movement: 
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where pc1 and pc2 represent the first and second principal 

component, ranked by highest variance, and the aij 

coefficients represent the loadings that map the original 

space into the new orthogonal one. 

We considered as features for the classification both the 

ratio of the variance explained by the two principal 

components (var(pc1)/var(pc2)) and the slope of the direction 

of maximum variance. The ratio of variances enables to 

discriminate if the data in the VEOG/HEOG plane are 

concentrated mainly along a single direction, or if both the 

orthogonal axes described by the principal components 

account for similar portions of the data variance. 

The slope of the maximum variance axis is defined as the 

ratio between the two loadings of the first principal 

component (a21/a11) and determine the main direction of 

each movement. Preliminary analysis has shown that this 

variable is very useful to discriminate between non-circular 

eye movements (horizontal, vertical and oblique). Fig. 2 
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shows the direction of maximum variance for samples of 

each class of eye movement, while Table I reports the 

corresponding numerical values of the slope, area and ratio 

of variances.  
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Figure 2.  Observation of four eye movements reported in Fig.1, 

represented in the normalized VEOG/HEOG plane. The black line 
represents the direction of maximum variance, evaluated by PCA. For each 

movement, the correspondent values of the features derived from EOG 

trajectory are reported in Table I.  

TABLE I.  FEATURES FROM EOG TRAJECTORY 

 Slope of 

Maximum 

Variance 

Within 

Trajectory 

Area  

Ratio of pc-

variances 

Vertical 3.7303 0.0529 0.0096 

Horizontal 0.1892 0.0571 0.0575 

Oblique 1.0178 0.2145 0.0239 

Circular 0.5095 1.0686 0.3131 

 

The main idea behind the introduction of these classification 

features is that the relative amplitude of the VEOG and 

HEOG signals may be indicative of the correspondent 

geometrical vertical and horizontal component of each eye 

movement. However, the dispositions of HEOG and VEOG 

electrodes around the eyes are different and this could cause 

a different proportionality between the electrical potential 

recorded and the real projection of the movements in the 

correspondent direction. In order to overcome this problem, 

before the evaluation of the classification features, each 

HEOG and VEOG trials was normalized respectively to the 

maximum correspondent HEOG and VEOG value recorded 

among all the movements (independently from the class, 

separately for each subject). 

D. Features selection  

The performance of any classifier is strongly dependent 

on the number and the specific set of features; it does not 

necessarily increases with the number of features, and 

redundancy in the dataset can reduce it.  

In order to cope with this issue, an optimal subset of the 

candidate features was derived for each classification 

method (herein we recall that we take into account KNN, 

LDA and QDA) using a suboptimal search method (the 

number of candidate feature was too high for performing an 

exhaustive search). Among features selection algorithms, the 

Pudil’s Sequential Forward Floating Selection (PSFFS) 

method [5] has been chosen, mainly because of its capacity 

of treating the nesting problem, namely the fact that in 

sequential standard methods once a feature has been added 

or discarded it cannot be re-excluded or reselected, 

respectively. On contrary, the PSFFS is a bottom up search 

procedure which includes new features by means of 

applying roles similar to the plus l-take away-r algorithm, 

but with a number of forward and backward steps 

dynamically controlled, instead of fixed as in the original 

plus l-take away-r approach [7].  

E. Classifiers comparison 

In order to objectively measure and compare the 

performance of each classifier, a stratified k-fold cross-

validation was performed. The dataset was then randomly 

partitioned into six equal folds, each containing the same 

fractions of observations from classes of the original dataset. 

The misclassification error was obtained as the mean value 

of those evaluated on each fold, using the remaining ones as 

training-set. However, the procedure does not test the 

capacity of the classifiers to overcome variability between 

different subjects. The validation procedure was then 

repeated, dividing the dataset in five folds, each containing 

signals belonging to only one subject. 

III. RESULTS 

The results of the stratified k-fold cross-validation 

revealed no significant difference in the performance of the 

classifiers, since all of them reached a total percentage of 

correct classifications close to 100%, independent on the 

movement class. However, it is worth noting that this result 

does not take into account inter-subjects variability, in fact, 

performing the inter-subject cross-validation in disjoined 

training end test set (different subjects in the two sets) 

provided global performances significantly lower, as shown 

in Table II.  

TABLE II.  INTER-SUBJECT CROSS-VALIDATION 

 KNN LDA QDA 

Misclassification 

Error 

27% 27.8% 29.9% 

 

The best global performance has been obtained using the 

KNN method, however the QDA showed the best capacity 

of identifying circular eye movements. This is shown in 

detail in Fig.3, where are reported the confusion matrices of 

inter-subject validation for the three classification methods. 

The matrix shows along columns the original class of the 

movement, while rows indicate the correspondent class 

assigned by the classifier. Irrespective of the classification 

method, best results are obtained in identifying vertical 

movements, whereas the greatest classification errors are 

related to the identification of oblique movements. Based on 

the global performance we adopted the KNN as the best 

classification method.  

For the KNN classifier, the subset of features selected by 

means of PSFFS method were: 1) Horizontal Broadband 
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Power, 2) Vertical Broadband Power, 3) Horizontal δ Power, 

4) Horizontal θ Power, 5) Horizontal σ Power, 6) Vertical δ 

Power, 7) H/V β Power Ratio, 8) Slope of Maximum 

Variance, 9) Within Trajectory Area. The KNN 

classification was based on a features subset composed by 4 

out of 9 features were related to power band distribution in 

the HEOG, whereas only one feature was derived from the 

VEOG. The highest frequency band improves the 

classification performance by means of H/V β Power Ratio. 

The analysis of the movement trajectory in the 

VEOG/HEOG plane provided an important contribution to 

the classification by means of two features introduced in the 

optimal subset. The Within Trajectory Area and the Ratio of 

principal component variances describe a similar aspect of 

the movement, and for this reason, only one of them was 

selected in the optimal subset. 
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Figure 3.  Confusion matrices obtained by inter-subject cross-validation for 

LDA, QDA and KNN. The columns of the matrix indicate the original class 

of the movements, while rows show the output class assigned by the 

classifier. 

IV. CONCLUSION 

The combination of the detection algorithm [4] and the 

present procedure for the automatic eye movements 

classification represents a new tool for the complete analysis 

of REMs activity during sleep, from the time series of REM 

occurrence to the directional properties.  

In order to fine-tuning the classification algorithm we 

have compared different classification methods and we have 

adopted the KNN method as the best solution, because it has 

provided the better global classification performances and 

the better classification performance for the horizontal 

direction movements, which are the most frequent during 

REM sleep.  

The proposed classification method could represent a 

valuable tool for the research on REMs physiological origin 

and functional significance. Until now in fact many studies 

have tried to analyze REMs directional aspect, for example 

retrospectively associating the direction of REMs to dream 

recall [8], or showing how ocular activity during 

wakefulness can affect directional properties of REMs 

during the night [9].  

Moreover, the new tool could have clinical relevance 

since some neurodegenerative disorders are associated to 

impairment or alteration of REMs temporal pattern and 

directional properties [10]. 
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