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Humans and other animals are able to make rough estimations of quantities using what has been termed
the approximate number system (ANS). Much evidence suggests that sensitivity to numerosity correlates
with symbolic math capacity, leading to the suggestion that the ANS may serve as a start-up tool to
develop symbolic math. Many experiments have demonstrated that numerosity perception transcends the
sensory modality of stimuli and their presentation format (sequential or simultaneous), but it remains an
open question whether the relationship between numerosity and math generalizes over stimulus format
and modality. Here we measured precision for estimating the numerosity of clouds of dots and sequences
of flashes or clicks, as well as for paired comparisons of the numerosity of clouds of dots. Our results
show that in children, formal math abilities correlate positively with sensitivity for estimation and
paired-comparisons of the numerosity of visual arrays of dots. However, precision of numerosity
estimation for sequences of flashes or sounds did not correlate with math, although sensitivities in all
estimations tasks (for sequential or simultaneous stimuli) were strongly correlated with each other. In
adults, we found no significant correlations between math scores and sensitivity to any of the psycho-
physical tasks. Taken together these results support the existence of a generalized number sense, and go
on to demonstrate an intrinsic link between mathematics and perception of spatial, but not temporal
numerosity.

Keywords: numbr sense, numerosity perception, numerical cognition, developmental dyscalculia,
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Humans and many other animals can make rapid but approxi-
mate estimates of nonsymbolic numerical magnitudes (numeros-
ity). This nonverbal ability is often referred to as the number sense
or approximate number system (ANS; Dehaene, 2011). The sen-
sory precision of this system refines during development, and

varies considerably between individuals (Halberda, Mazzocco, &
Feigenson, 2008; Halberda, Ly, Wilmer, Naiman, & Germine,
2012; Odic, Libertus, Feigenson, & Halberda, 2013). Importantly,
strong correlations have been found between precision in numer-
osity judgments and formal math abilities (Anobile, Stievano, &
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Burr, 2013; Chen & Li, 2014; Cicchini, Anobile, & Burr, 2016;
Feigenson, Libertus, & Halberda, 2013; Halberda et al., 2008;
Libertus, Odic, Feigenson, & Halberda, 2016; Piazza, 2010; Starr,
Libertus, & Brannon, 2013), leading to the suggestion that the
ANS might act as a primitive “start-up” tool for subsequent math
acquisition (Piazza, 2010).

There is evidence that training on nonsymbolic approximate
number tasks yields improvements in symbolic arithmetic perfor-
mance in adults (Park & Brannon, 2013, 2014), school-age chil-
dren (Hyde, Khanum, & Spelke, 2014; Rasanen, Salminen, Wil-
son, Aunio, & Dehaene, 2009; Wilson, Dehaene, Dubois, & Fayol,
2009; Wilson et al., 2006; Wilson, Revkin, Cohen, Cohen, &
Dehaene, 2006) and preschoolers (Park, Bermudez, Roberts, &
Brannon, 2016). Training effects have also been reported in the
opposite direction, as math formal education was found to signif-
icantly enhance precision in numerosity estimation tasks (Piazza,
Pica, Izard, Spelke, & Dehaene, 2013).

Although the above mentioned studies strongly support a causal
link between ANS and math capacity, the issue remains controversial
(Lindskog & Winman, 2016). For example, several groups have
failed to find a correlation between ANS precision and math abilities
(Lyons, Price, Vaessen, Blomert, & Ansari, 2014; Rousselle & Noël,
2007; Sasanguie, Defever, Maertens, & Reynvoet, 2014; Sasanguie,
De Smedt, Defever, & Reynvoet, 2012), while others found that
training on approximate numerosity does not change formal math
abilities (Obersteiner, Reiss, & Ufer, 2013; Sullivan, Frank, & Barner,
2016). Indeed, the very notion of a “sense of number” has itself been
challenged (Durgin, 2008; Dakin, Tibber, Greenwood, Kingdom, &
Morgan, 2011; Leibovich, Katzin, Harel, & Henik, 2017), leading to
much debate (Anobile, Cicchini, & Burr, 2016; Cicchini et al., 2016).
Given the controversial nature of the evidence, and the possible
clinical implications of understanding the relationship between ANS
and math learning (such as improving treatments of dyscalculia), it is
important to understand well the relationship between numerosity and
math skills.

Numerosity is not restricted to spatial ensembles of visual stimuli.
Sequences of sounds and also visual events can be easily numerated.
Recent adaptation studies have provided strong evidence for the
existence of a generalized number system, encoding numerosity
across space and time, and across different senses. Adapting to a fast
sequence of numerosities causes underestimation of subsequent stim-
uli, while adapting to a slow sequence causes overestimations (Arri-
ghi, Togoli, & Burr, 2014). The effects generalize from audition to
vision and vice versa, and also from sequences of flashes to spatial
arrays. Numerosity adaptation even generalizes between actions and
vision: adapting to midair finger-tapping (without sensory feedback)
distorts the perceived numerosity of sequences of flashes, and also
spatial arrays (Anobile, Arrighi, Togoli, & Burr, 2016). Other studies
have shown that preschoolers (Barth, La Mont, Lipton, & Spelke,
2005), as well as adults (Barth, Kanwisher, & Spelke, 2003; Brannon,
2003), efficiently perform cross-modal and cross-format judgments,
with little cost in either accuracy or reaction times (RTs) when
comparing auditory with visual temporal sequences or dot arrays.
Infants (Jordan & Brannon, 2006) and newborns (Izard, Sann, Spelke,
& Streri, 2009) preferentially look at ensembles of visual stimuli
(faces or abstract shapes) numerically matched with ongoing auditory
stimuli (soundtrack of adult voices or sequences of sounds). These
studies suggest that soon after birth, humans may be equipped with an
already functional “core knowledge system,” able to spontaneously

focus on nonsymbolic quantities, independently of stimuli format and
modality (Dehaene & Brannon, 2011; Dehaene, Izard, Pica, & Spelke,
2006; Dillon, Huang, & Spelke, 2013; Feigenson, Dehaene, & Spelke,
2004). This language-independent system may be the evolutionary
base for abstract math.

Given that judgments of simultaneous and sequential numerosity
are likely to share some perceptual mechanisms, and that simultane-
ous numerosity sensitivity predicts math skills, it is reasonable to ask
whether sensitivity in sequential numerosity is also a good predictor
of math. Does the sensory modality of the stimuli play a role in the
link between ANS and math skills? Similarly, are both discrimination
and estimation processes of numerosity good predictors of math? And
finally, do math abilities correlate unspecifically with higher sensitiv-
ity in nonnumerical quantity perceptual tasks?

We measured ANS precision in children and adults on several
psychophysical tasks: verbal magnitude estimation (“how many?”) of
dot ensembles, series of flashes or streams of sounds, and nonverbal
discrimination (“which pattern has more?”) of simultaneous numer-
osity (dot ensembles) and disk size. Math abilities were measured by
assessing performance on mental calculation and tasks measuring
numerical magnitude knowledge (“select the highest digit”; “place the
target number in the appropriate position”). The hypotheses are
straightforward: if the cognitive systems sustaining mathematical cog-
nition encode simultaneous as well as sequential numerosity, we
expect to find significant correlations in all cases; on the other hand,
correlations in one domain and not the other would suggest the
existence of at least partially different mechanisms.

Method

Participants

One hundred forty-four subjects participated: 105 children (7–11
years old, M � 9.0), and 39 adults (19–30 years, M � 25.7). Children
were recruited from local schools, and only those who returned a
signed consent from parents were included. Experimental procedures
were approved by the local ethics committee (Comitato Etico Pedi-
atrico Regionale—Azienda Ospedaliero-Universitaria Meyer—Flor-
ence, Italy; project: Early Sensory Cortex Plasticity and Adaptability
in Human Adults) and are in line with the Declaration of Helsinki.

General Procedures

Stimuli were generated and presented with MATLAB 8.1 using
PsychToolbox routines (Brainard, 1997) on a 17-in. LG touch screen
monitor with 1,280 � 1,024 resolution at refresh rate of 60 Hz (model
number: L1730SF, Milano, Italy). Each participant was tested in two
separate sessions (usually occurring within the same week), lasting
around 1 hr each. Math abilities were measured by a paper-and-pencil
test (only children) and by a computerized digit summation task. All
participants also performed a nonverbal reasoning task (Raven matri-
ces). Math skills and nonverbal reasoning were usually measured at
the end of the first session.

Numerosity Discrimination

Two patches of dots were briefly (250 ms) presented simultane-
ously on either side of central fixation. Participants indicated the side
of the screen with more dots. The numerosity of the test stimulus
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(randomly left or right) was 24, while the probe adaptively changed
following a QUEST (Quick Estimation by Sequential Testing) algo-
rithm (Watson & Pelli, 1983). Dots were 0.25° diameter, half white
and half black, presented at 80% contrast on a gray background of 40
cd/m2. They were constrained to fall within a virtual circle of 10°
diameter, centered at 8° eccentricity. All participants performed two
sessions of 35 trials. The proportion of “test greater” trials was plotted
against the log ratio of test and probe, and fitted with cumulative
Gaussian error functions (Figure 1A). The 50% point of the error
functions estimates the point of subjective equality (PSE), and the
difference in numerosity between the 50% and 75% points gives the
just notable difference (JND), which was used to estimate Weber
fractions (WFs; JND/PSE). Note that JND and WFs are both esti-
mates of thresholds, the inverse of sensitivity.

Numerosity Magnitude Estimation

Visual stimuli were either ensembles of dots (diameter 0.5°, half
white and half black), presented simultaneously for 250 ms within a
virtual 16° diameter region, or sequences of flashes (sharp-edged
white disks of 90 cd m�2 and 5° diameter) presented in a pseudoran-
dom order within a 2-s interval. In the sequential presentation, each
flash lasted 40 ms with the constraint that two pulses could not fall
within 40 ms of each other. All visual stimuli were presented cen-
trally, with subject viewing distance set at 57 cm, on a gray back-
ground of 40 cd/m2. Precision for numerosity estimates of sequential

stimuli was also investigated in audition, with 500 Hz pure tones
ramped on and off with 5-ms raised-cosine ramps, presented with an
intensity of 80 dB (at the sound source) and digitized at a rate of
65 kHz. Sounds were presented through high-quality headphones
Microsoft lifechat LX-3000 (Microsoft, Redmond, Washington), and
perceptually localized in the middle of the head. In all conditions the
numerosity range was 2–18, and subjects asked to verbally report the
number of perceived stimuli, which the experimenter recorded via
computer keyboard. The testing phase was preceded by a training
session of 17 trials (not included in the main analyses). During
training, all numerosities were randomly presented, and feedback
provided by displaying the actual numerosity displayed on the mon-
itor screen. After training had been completed, the testing phase
started with a block of 51 trials (three repetitions for each numerosity),
with no feedback. In total each participant performed 204 trials. Test
numerosity ranged from 2 to 18, but we analyzed only the range 5–16
to avoid the subitizing range as well as edge effects (e.g., from
subjects knowing or guessing that the numerosity never exceeded 18
dots). Precision was defined as the WF, the standard deviation of
response distributions normalized by the average response; WFs were
averaged across all numerosities.

Size Discrimination

Stimuli were gratings sinusoidally modulated in luminance with
a spatial frequency of 2 cycles per degree, a Michelson contrast of

Figure 1. Psychophysical discrimination tasks. Aggregate psychometric functions for children (blue circles and
lines) and adults (red squares and lines) for three different discrimination tasks. (A) Numerosity discrimination:
Participants were required to select which one out of two briefly presented (250 ms) dots ensemble was more
numerous. (B) Symbolic addition discrimination: On each trial, participants were asked to mentally add—as
quickly as possible—the digits numbers on the left and compare the sum with that on the right (5 in this
example), indicating which side was numerically higher (right in the example: 3 � 1 vs. 5). Stimuli remained
until response. (C) Size discrimination: Participants were asked to indicate which of two briefly (250 ms)
presented annulus was perceived as larger (method adapted from Pooresmaeili, Arrighi, Biagi, & Morrone,
2013). In all cases, discrimination precision was measured by WF (just notable difference/point of subjective
equality). For example, a WF of 0.15 in the symbolic addition task (B) indicates that the sum of the two addenda
had to be 15% higher or lower than reference to raise responses from chance to 75% correct responses. See the
online article for the color version of this figure.
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90% that were vignetted by annular contrast window (see insert to
Figure 1C). In each trial two annuli were simultaneously presented
for 250 ms on the left and right side of the fixation point, centered
at 10° eccentricity, and subjects required to indicate which ap-
peared to be larger. The diameter of the test stimulus (randomly
left or right) was 5° or 8° (35 trials each, randomized trial-by-trial),
while the probe varied in diameter by a percentage drawn ran-
domly from a Gaussian distribution centered at 0 with SD � 20%.
To minimize alternative judging strategies (such as estimating
border-to-center of the screen distance), we independently jittered
the horizontal eccentricity of the test and probe between 8.5° and
11.5°, and their distance from the horizontal meridian within � 3°.
After stimulus presentation, a 100 ms full screen random noise
mask was displayed to cancel out possible afterimages. Proportion
of “test larger” trials was plotted against the log-ratio of test to
probe and fitted with cumulative Gaussian error functions (see
Figure 1C). As before, the 50% point estimates the PSE, and the
size change needed to move from 50% to 75% of correct responses
gave the size discrimination threshold.

Mental Calculation Task

Mental calculation was measured by a custom computerized
task. On each trial three digits (3°�3°, Geneva font) were dis-
played. Two of them (vertically aligned at a distance of 1.5°) were
displayed to the left and one to the right of a central reference point
(horizontal eccentricity 2°). Participants were required to mentally
sum the two digits on the left and compare the result with the
single digit on the right and thus to indicate (by appropriate key
press) which side contained the higher magnitude. Both the ad-
denda ranged from 1 to 9 and were randomly chosen, on each trial,
with the sum of the two numbers constrained between 5 and 10
(grain of 1). The single digit (comparison sum) was determined by
adding to the real sum a delta value chosen from a flat distribution
ranging from � 60% for children, and � 40% for adults, rounding
to the closest integer. Participants performed two blocks of 35
trials. To minimize strategies other than mental calculation (such
as serial counting), we asked participants to respond as fast as
possible, but accurately. We applied a time threshold (2 and 5 secs
for adults and children respectively), with thresholds derived from
preliminary data. In trials where RTs exceeded the threshold 5.6%
and 1.8% for children and adults respectively, we gave an auditory
feedback. Not every trial where RTs exceeded the threshold were
eliminated from the analysis, as we applied a within subject
cut-off: for each participant we measured the average RTs (across
trials) and eliminated those higher or lower than 3 SD. The total
number of eliminated trials was 38 (1.1%) for adults and 80 (1.4%)
for children. The proportion of “sum higher” was plotted against
the percentage difference between the sum and the single digit. As
with the other discrimination tasks, we fitted the data with a
cumulative Gaussian error functions (Figure 1B). The percentage
difference needed to move from 50% to 75% correct responses
provided an additional discrimination threshold. This is logically
equivalent to the WF usually measured for numerosity discrimi-
nation tasks, and could be interpreted as the amount of noise
present in the mental addition process. Similarly to Cicchini et al.
(2016), we computed for each participant two separate z scores:
one for precision (WF) and the other for response speed (RT). z
Scores were measured using the mean and standard deviation of

the participant grade class (from second to fifth grade). For adults
we used the mean and standard deviation of the entire group.
Finally, for each participant, we computed a performance-combined
index averaging the two z scores.

Semantic Skills

Two types of paper-and-pencil task were administered (see
Figure 2 for examples): (a) choose and mark the largest numbers
in a set of three (one to five digits, 36 trials) and (b) mark where
a number should be placed (four possible positions among three
other numbers, one to six digits, 18 trials). These tasks were
extracted from an Italian standardized battery (Biancardi, Bach-
mann, & Nicoletti, 2016). They are thought to tap the semantic
component of numeracy (Dehaene, Piazza, Pinel, & Cohen, 2003),
and have been demonstrated to be good predictor of children
numerosity discrimination thresholds (Anobile et al., 2013; Cic-
chini, Anobile, & Burr, 2016; Piazza, 2010). Again, accuracy and
speed were measured (as the number of errors and time in minutes
required to complete the three tasks), and z scores calculated
separately for speed and accuracy, then combined by averaging
(same technique exploited by Anobile et al., 2016). Cronbach’s
alpha on raw scores was 0.77.

Preprocessing

A priori power analysis (effect size: 0.35, � � .05, one-tailed)
reveals that to reach a power (1 � �) of 0.8 a sample size of 46 was
needed (36 in case of [1 � �] � 0.7). Our samples can detect a true
correlation of 0.35 in 74% and 98% of cases for adults and children
respectively. Effect size (bivariate r) was estimated from meta-
analyses (Chen & Li, 2014; Fazio, Bailey, Thompson, & Siegler,
2014; Schneider et al., 2017). Seven children were eliminated from
the dataset: five because they were absent during the second data
collection session and two because they were subsequently diag-
nosed with neurodevelopmental disorders (one low cognitive func-
tioning and one oppositional defiant disorder, and both unable to
accomplish most of the tasks). For children, we had six missing
values due to technical problems and participant unavailability:
Two children did not perform the addition task, three children did
not perform the size discrimination task, and one did not perform
the dots numerosity estimation task. Missing values were left
empty and data excluded with pairwise deletion method.

Figure 2. Example of paper and pencil math tasks. In separate blocks of
trials, children were required to quickly choose and mark the highest
numbers in a set of three (left panel) and to mark where a number should
be placed among others (right panel). Both speed and accuracy were
measured.
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Data Analysis

Discrimination thresholds were separately measured for each
participant and condition. The raw threshold distributions of all
perceptual tasks were not normally distributed (failing the Jarque–
Bera goodness-of-fit test of composite normality, but after loga-
rithmic transform the natural scale for Weber fractions), the non-
normality became insignificant. The math scores were normal
without correction. We therefore used parametric Hierarchical
regression models and Pearson’s correlation to search for correla-
tions between log thresholds and math scores. However, we also
used nonparametric statistics (Spearman partial ranked correla-
tions on nontransformed data) to confirm the data trends. Sepa-
rately for children and adults, we also measured and compared the
reliability of the psychophysical tasks, using a split-half “sample-
with-replacement” (nonparametric) bootstrap technique suitable
for reliability of measures extracted form psychometric functions
(Anobile, Castaldi, Turi, Tinelli, & Burr, 2016). For the verbal
numerosity tasks and the formal math tasks we also measured
Cronbach’s alpha. In case of split-half, for each participant we
calculated two separate thresholds (or RT measurement) from a
random sample of the data (as large as the data set taken, sampled
with replacement from the data set), and then computed the cor-
relation between those two measures. We reiterated the process
1,000 times for all participants, to yield mean and standard error
estimates of reliability. Statistical significance was indexed by p
values and also by the Bayes factor (Wetzels & Wagenmakers,
2012). Bayes factor is the ratio of the likelihood probabilities of the
two Models H1/H0, where H1 is the likelihood of a correlation
between the two variables, and H0 the likelihood that the correla-
tion does not exist. By convention, a log Bayes factor (LBF)
greater than 0.5 it is considered substantial evidence in favor of the
existence of the correlation, and LBF 	�0.5 substantial evidence
in favor of it not existing. Absolute values of LBF greater than 1
are considered strong evidence. Values greater than �2 are con-
sidered decisive. Data were analyzed with both MATLAB and
SPSS Version 20.0.

Results

General Results

None of the subjects, either adult or children, had any difficulty
in performing any of the comparison tasks, producing orderly
psychometric functions. Figure 1 shows the aggregate data for
children (circles, blue) and adults (squares, red), together with their
fitted psychometric functions (cumulative Gaussians). The curves
are steeper for the adults than for the children, reflecting lower
thresholds (higher precision) and, hence, lower WF (see Table 1
for between participants averaged values).

Figure 3 shows the results for the numerical magnitude esti-
mation tasks. Figure 3A and 3B plot average responses as a
function of numerosity, which were reasonably accurate (de-
spite a slight tendency for underestimation) for all three types of
stimuli (spatial arrays of dots and temporal sequences of flashes
and tones). The insert in Figure 3A shows how precision (WF)
was calculated for the estimation tasks: for each numerosity (in
this case, 18), we divided the standard deviation of the re-
sponses by the mean estimate: the lower the precision in the
estimates, the higher the standard deviation and hence the WF.
The averaged WFs (across subjects) for each numerosity are
reported in Figure 3C and 3D for children and adults respec-
tively (see Table 1 for aggregate WF across numerosities). As
expected, WFs were particularly low for numerosities within
the subitizing range (2– 4), then become constant at higher
numerosities: constant WFs is one of the signatures of ANS
(Anobile, Cicchini, & Burr, 2014). All our analyses focused on
this estimation range so in the subsequent data analyses, nu-
merosities within the subitizing range (�4) were always ex-
cluded. Figure 4 shows that, as expected, precision improved
with age for all numerical tasks: adults performed more pre-
cisely than children (black regression lines), and older children
more precisely than younger (green regression lines).

Table 1
Psychophysical Tasks Summary Statistics

Tasks and stimuli

Children Adults

M SD N

Reliability

M SD N

Reliability

Split-half � Split-half �

Paradigm: Discrimination

Numerosity
Spatial (dots) .477 .265 98 .57 � .12 .243 .107 38 .69 � .12
Size
Disks .098 .04 95 .68 � .09 .057 .022 38 .66 � .11

Additiona

Digit .166 .14 96 Speed: .97 � .006
Precision: .58 � .18

.097 0.057 38 Speed: .95 � .01
Precision: .75 � .08

Paradigm: Magnitude estimation

Numerosity
Spatial (dots) .166 .074 97 .75 � .06 .82 .117 .045 38 .85 � .05 .75
Flashes .179 .07 98 .76 � .05 .84 .136 .05 38 .80 � .07 .66
Sounds .176 .077 98 .74 � .05 .83 .117 .046 38 .85 � .04 .83

a Mean reaction times reported in the method section.
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Task Reliability

Before testing for correlations between numerical precision in
the psychophysical tasks and math skills, we ensured that reliabil-
ity within the different tasks was similar. Reliability was measured
separately for each task and group with a split-half method mod-
ified for psychophysical procedures and Cronbach’s alpha (see
Method for details). Reliability values are reported in Table 1 and
were not statistically different either within or between groups
(bootstrap sign test on split-half indexes, all p 
 .05).

Correlations Between Different Measures of ANS

We first looked for correlations in ANS precision within the
four different psychophysical tasks in both primary schoolchildren
and adults. We considered the paired-comparison task (“which has
more?”) and three different versions of the estimation task (“how
many?”) for dot ensembles, sequences of flashes or sequences of
tones. If ANS generalizes across senses, stimulus presentation
format (sequential or simultaneous) and task paradigm (estimation
or paired-comparison), precision in all the ANS tasks should be
strongly correlated. Tables 2 and 3 report correlation coefficients,
associated p values and Bayes factors (LBF) for children and
adults respectively. Positive r values indicate that high precision in
a given ANS tasks correspond to higher precision in another).
Results with children (see Table 2) indicate that even when the
effect of age and nonverbal IQ was controlled for (below diago-
nal), all the WFs measured by estimation tasks correlated posi-

tively and significantly with each other (simultaneous visual vs.
sequential auditory �p � 0.41; simultaneous visual vs. sequential
visual �p � 0.32; sequential visual vs. sequential auditory �p �
0.57; all p 	 .001). Figure 5A–C shows a graphical representation
of children correlations (zero-order) for all combinations of mag-
nitude estimation tasks. The pattern of results with adult partici-
pants (see Table 3) reveals a general trend similar to that found in
children, with all estimation thresholds positively correlated with
each other. However, only the correlation between sequential
visual and sequential auditory estimation passed Bonferroni cor-
rection after the effect of nonverbal IQ was controlled for (�p �
0.57, p 	 .001, alpha level: 0.05/15 � 0.0033). These results show
that performance in all the magnitude estimation tasks were pos-
itively correlated with each other, suggesting a common mecha-
nism.

Correlations Between Paradigms

Here we asked whether ANS generalizes across paradigms:
between magnitude estimation and paired-comparison (Figure 5D–
F). In children, WFs measured with the paired-comparison task
correlate positively with those measured with the magnitude esti-
mation paradigms, but no correlation reached the statistical signif-
icance level (Bonferroni corrected � � 0.003), although two out
three correlations were very close (r � .266, r � .262, for tones
and spatial arrays respectively, both p � .004). Because of the
conservative Bonferroni corrected alpha level of p 	 .003, we also
checked for the relationship between magnitude estimation tasks
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and spatial discrimination using a regression model. We used
spatial discrimination thresholds as dependent variable and all the
magnitude estimation thresholds together as predictors. This anal-
ysis confirmed the independence between performance on magni-
tude estimation tasks and spatial discrimination (flashes:
� � �0.16, t � �1.23 p � .22; dots spatial arrays: � � 0.14, t �
1.16, p � .247; tones: � � 0.14, t � 2.02, p � .05). For adult
participants (see Table 3), all correlations were far from the sig-
nificance level (the lowest was p � .10 for the correlation between
estimation and paired-comparison of clouds of dots).

Approximate Number System and Math Abilities

We measured formal math by means of two tasks indexing seman-
tic skills and mental calculation abilities. In the semantic tasks, chil-
dren were required to quickly select the highest digit number between
three options, or to place a target number between others, depending
on their numerical magnitude (see Method for details). Mental calcu-
lation was measured by a “symbolic addition discrimination task” in
which participants were required to rapidly mentally add two digit
numbers (ranging from 1 to 9) and compare the result (ranging from

Table 2
Full Correlation Matrix: Children

Task 1 2 3 4 5 6

1. Math composite index 1 �.29 (.002) [.68]a �.30 (.002) [.8]a �.12 (.122) [�.8]c �.05 (.309) [�1]c .07 (.238) [�.99]
2. Numerosity discrimination (dots) �.26 (.007) 1 .26 (.004) [.36] .26 (.004) [.34] .09 (.172) [�.93] .15 (.07) [�.62]
3. Spatial estimation �.34 (<.001)a .22 (.017) 1 .49 (<.001) [4.5]b .48 (<.001) [4.3]b .26 .005 [.34]
4. Temporal tones estimation �.09 (.194) .18 (.035) .41 (<.001)b 1 .48 (<.001) [4.3]b .48 (<.001) [4.3]b

5. Temporal flash estimation .14 (.083) .05 (.308) .32 (<.001)b .57 (<.001)b 1 .26 .005 [.34]
6. Size discrimination .19 (.031) .08 (.213) .09 (.1954) .33 (<.001)b .23 (.01) 1

Note. Above diagonal: zero-order Pearson r coefficients; below diagonal: partial Spearman rho coefficients (age and nonverbal reasoning controlled).
Significant correlations are highlighted in bold. One-tailed p values are reported in parentheses; log10 Bayes factors are reported in square brackets. Alpha
level Bonferroni corrected � .0033 (.05/15 comparison).
a Significant correlations between math skills and numerosities. b Significant correlations between different numerosity estimates. c Correlations where
the log10 Bayes factor suggests there exists strong evidence for zero correlation.
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5 to 10) with a given comparison number. Negative correlations
indicate that higher numerosity precision correspond to higher math
abilities.

Children

Semantic tasks and mental addition were correlated between
each other (r � .42, p 	 .001) and both correlate well with
precision in estimation (r � �0.27, p � .003; r � �0.23, p � .01,
for semantic and addition tasks respectively) and discrimination of
simultaneous visual numerosity (r � �0.30, p � .001; r � �0.21,
p � .01, for semantic and addition tasks, respectively). Importantly
for the purpose of this study, precision in sequential numerosity
(sequences of flashes or tones) was unrelated to both math tasks
(flashes vs. semantic task r � �0.01, p � .44; flashes vs. addition
r � �0.1, p � .163; tones vs. semantic task r � �0.06, p � .25;
flashes vs. addition r � �0.15, p � .07) even when no covariates
were controlled for. Given that both mathematical tasks were
correlated and similarly related to numerosity performance, to gain
information reducing the number of variables, we built a summary
math index (math composite index) by averaging the z scores for
the semantic and calculation task. Figure 6 reports zero-order
correlations between math composite index and the four different
measures of the ANS. As before, only simultaneous visual numer-
osity was found to significantly correlate with math abilities (Fig-
ure 6A and 6B), while even with this liberal analysis (no covariates
were controlled for) sequential numerosity was not related to math
skills (Figure 6C and 6D for flashes and tones estimations respec-
tively). When controlling for age and nonverbal reasoning, both
simultaneous numerosity tasks were still related to math (�p � �0.26,
p � .007; �p � �0.34, p 	 .001 for paired-comparison and estima-
tion), but only the correlation for estimation survived the Bonferroni
correction (� � .0033).

The correlational approach used so far may risk being too
conservative, as the high number of comparison variables (15) led
to a very conservative alpha level (� � .003), and it is not very
informative regarding the real extent of explained variance. We
therefore performed a series of hierarchical regression analyses
with the numerosity thresholds as predictors and the math com-
posite index as the dependent variable. Each predictor was tested
in a separate model and the controlling variables were entered each
time together as a block. Age and nonverbal reasoning, together,
explain 10% of math variance, Fchange(92) � 5.25, p � .007 (see
Table 4). The two simultaneous visual numerosity thresholds ex-

plained an additional significant 10.2% of variance, Fchange(90) �
5.8, p � .004, almost equally distributed between estimation and
discrimination (6% and 5.6% respectively, see Table 4). We then
asked whether simultaneous estimation and paired-comparison
thresholds contribute to math independently, or whether their
contributions are shared. We performed two separate hierarchical
regression analyses, with one of the two spatial numerosity thresh-
olds as predictor and the math composite index as the dependent
variable. Crucially, the controlling variables this time included
age, nonverbal reasoning and also the simultaneous numerosity
thresholds not used as predictors. Table 5 shows that both spatial
thresholds contributed independently to math, explaining about 4%
of variance each.

To rule out the possibility that the lack of correlation between
math and sequential numerosity magnitude estimation was due to
differences in intersubject variability between simultaneous and
sequential numerosity tasks, we ran a series of bootstrap sign-tests
on task variance ratio (10,000 iteration, sample-with-replacement).
On each iteration and for each condition, we computed the group
WF variance and their ratios (dots/flashes and dots/sounds). The p
values were derived by the proportion of times the ratio values
were higher than 1, implying higher dots WF variance. The p
values were 0.49 for the comparison between simultaneous nu-
merosity and sequential visual numerosity, and 0.48 between si-
multaneous and sequential auditory numerosity (see also Table 1
for groups task standard deviation), indicating that these tasks had
similar variability levels. Another possibility is that sequential
numerosity judgments do not involve approximate estimates. We
controlled for this by taking advantage of the fact that the main
feature of ANS is that it obeys Weber Law: variability linearly
scales with numerosity, leaving WF (variability/numerosity) stable
across numerosities (Anobile et al., 2014; Anobile, Turi, Cicchini,
& Burr, 2015; Dehaene, 2011; Ross, 2003). Thus, for each con-
dition we tested whether estimation obeys Weber law. Separately
for each estimation tasks and for each numerosity (5–16), we
measured the between average WF (see Figure 3C) and fitted it
with a linear regression model: a slope of zero implies that the WF
is constant across all tested numerosities. All the measured slopes
were not different from zero, suggesting that numerosity estimates
obeyed Weber’s law in all conditions (spatial: slope � 0.002 �
0.002, p � .15; flashes: slope � �0.004 � 0.008, p � .292;
sounds: slope � 0.0016 � 0.004, p � .069).

Table 3
Full Correlation Matrix: Adults Above diagonal: Zero-Order Pearson R Coefficients Below diagonal: Partial Spearman Rho
Coefficients (Non-Verbal Reasoning Controlled)

Task 1 2 3 4 5 6

1. Math (addition) 1 �.16 (.157) [�.7] �.36 (.012) [.18] �.32 (.02) [�.05] �.26 (.05) [�.35] �.44 (.003) [.78]
2. Numerosity discrimination (dots) �.02 (.449) 1 .21 (.096) [�.54] .16 (.156) [�.7] .05 (.373) [�.88] .27 (.046) [�.3]
3. Spatial estimation �.33 (.021) .178 (.144) 1 .22 (.08) [�.5] .46 (.001) [.96] .53 (<.001) [1.68]
4. Temporal tones estimation �.33 (.021) .16 (.166) .06 (.171) 1 .57 (<.001) [2.1] .40 (.013) [.46]
5. Temporal flash estimation �.33 (.021) �.003 (.493) .387 (.004) .57 (<.001) 1 .36 (.012) [.18]
6. Size discrimination �.16 (.161) .27 (.049) .42 (.002) .43 (.003) .30 (.03) 1

Note. Above diagonal: zero-order Pearson r coefficients; below diagonal: partial Spearman rho coefficients (nonverbal reasoning controlled). Significant
correlations are highlighted in bold. One-tailed p values are reported in parentheses; log Bayes factors are reported in square brackets. Alpha level
Bonferroni corrected � .0033 (.05/15 comparison).
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Adults. Adult math skills were tested only with the mental
calculation task as the semantic task was designed for children and
would saturate with adults. Table 3 shows that adult math skills
were not related to any of the ANS measures, even when no
covariates were controlled for. As for children, the correlational
approach risks being too conservative because the high number of
comparison (corrected alpha level of 0.003). We therefore also
performed hierarchical regressions to measure the how much math
variance can be explained by the single ANS components. As the
nonverbal reasoning by itself explains a significant portion of math
variance (15.7%), F(1,36) � 6.718, p � .01, we always entered it
as control variable each time in the first step. Table 6 shows that
none of the numerosity tasks explains a significant portion of math

variance (all p 
 .05). We then tried a more liberal analysis,
performing a regression analyses with math as dependent variables
and all the numerical thresholds together—as a block—as predic-
tor and no controlling variables. With this analysis, where all the
numerosity tasks can sum together their contribution, we found
that together they explained 21% of math variance, still not
sufficient to reach the statistical significance level, F(4,33) �
2.19, p � .09.

One possible explanation for the lack of correlation might be
that math abilities are too similar to each other so there is not
enough intersubject variability to drive significant covariance.
To test for this, we ran a bootstrap analysis on math abilities
variance between adults and children. On each iteration (10,000

Figure 5. Correlations between approximate number system (ANS) precision measures in children. (A–C)
Correlations between different ANS measures obtained with magnitude estimation tasks (“how many?”). (D–F)
Correlations between ANS measures obtained by magnitude estimation tasks against that obtained by a spatial
(dots) numerosity discrimination (two-alternative forced choice, “which most numerous?”) task. Filled symbols
report statistically significant correlations (Pearson zero-order correlations with alpha-level: 0.05/15 compari-
sons � 0.003; see Table 2 for partial Spearman rho correlations). See the online article for the color version of
this figure.
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in total), we sampled (with replacement) the data in the two
groups, and computed the ratio of the two variances. We then
counted the proportion of trials where the ratio was higher than
1, giving the probability (one-tailed p value) that the adults had
less variance than children. The p value was 0.028, confirming
that the adult group had less variance in math scores (mental
calculation in this case) than children, leaving open the possi-
bility that the lack of correlation between simultaneous visual
numerosity and math in adults might be simply explained in
these terms.

Correlations Between Size-Discrimination and Math

The results described above suggest that the best predictors
of formal math skills in children are ANS sensitivities (inverse

WF) for simultaneous visual numerosity (ensembles of dots).
However, it is not clear whether the correlation between simul-
taneous visual numerosity sensitivity and math is driven by the
visual comparison process itself (in this case the decision-
related process of the discrimination task that might have trig-
gered per se the correlation), or whether these correlations are
specific for simultaneous numerosity processing. We therefore
also measured sensitivity on a suitable control—size-discrimi-
nation—a visual task thought not to require processing of
numerosity: participants reported which of two disks was larger
(see methods for details). The results show that size discrimi-
nation thresholds were unrelated to math skills in children (see
Table 2). This control suggests that the correlation between
simultaneous numerosity sensitivity and math ability is not
driven by the comparison process itself, but is specific for

Figure 6. Correlations between approximate number system (ANS) and math skills in children. ANS Weber
fractions are plotted against standardized math skills level for the four ANS tasks: (A) spatial ensemble
discrimination, (B) spatial estimation, (C) estimation of flashes sequences, and (D) estimation of tones
sequences. Filled symbols report statistically significant correlations (Pearson zero-order correlations with
alpha-level � 0.05/15 � 0.0033; see Table 2 for partial Spearman rho correlations). See the online article for
the color version of this figure.
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numerosity encoding. We also looked for possible correlations
between math and size discrimination in adults. Although zero-
order correlation reveals a slightly significant correlation
(r � �0.44, p � .003, � � .003), when nonverbal reasoning
skills were controlled for, this correlation become insignificant
(�p � �0.16, p � .16, see Table 3). As above, we also
controlled for lack or difference of variability and precision
(WF) between size and numerosity tasks. Bootstrap analysis on
both adults and children revealed that size discrimination had
lower variability and higher precision compared with both
numerosity discrimination and estimation (all p 	 .01).

Discussion

This study aimed to measure the relationship between ANS
sensitivity and math abilities by investigating the role of stimulus
sensory modality (vision or audition), presentation format (simul-
taneous or sequential), task requirements (paired comparisons or
verbal estimation), and magnitude dimensions (numerosity or
size), in both children and adults.

We first replicated previous studies showing that children with
higher precision in estimating and discriminating simultaneous visual
numerosity show higher abilities in formal math (Anobile et al., 2013;
Chen & Li, 2014; Cicchini et al., 2016; Feigenson, Libertus, &

Halberda, 2013; Halberda et al., 2008; Libertus, Feigenson, & Hal-
berda, 2013; Piazza et al., 2010). However, we also found that
precision in estimating sequential numerosity—sequences of flashes
or sounds—was completely unrelated to math abilities, both in chil-
dren and in adults. Performance on a control nonnumerical discrim-
ination task (stimuli size) was also unrelated to math abilities,
showing that the correlation between simultaneous numerosity
discrimination and math was not unspecifically driven by the visual
discrimination processes itself. Furthermore, the lack of correlation in
children between sequential numerosity and math cannot be ac-
counted for by trivial methodological issues, as the data in all mag-
nitude estimation tasks obeyed Weber Law, were correlated with each
other, and had similar reliability levels and intersubject variability. We
also quantified the strength of these null correlations by means of
LBF. LBFs for correlations between sequential numerosity and math
skill were both near �1 (Table 2, red cells), indicating very strong
evidence in favor of the null hypothesis of zero correlation (Wetzels
& Wagenmakers, 2012).

On the other hand, we believe these results suggest that math
reasoning has a specific relationship with the encoding of spatial
information about quantity. This relationship, however, may di-
minish in adulthood, as adult ANS acuity for spatial numerosity
estimation and discrimination did not correlate with simple math

Table 4
Contribution of Approximate Number System Components on Children Math

Model Predictor R2 Rchange
2 Fchange df p

First step Age and nonverbal IQ .101 — 5.153 92 .007�

Spatial (dots)
Model 1 Paired comparison .156 5.6% 6.061 92 .016�

Model 2 Estimation .161 6% 6.526 91 .012�

Temporal (sequences)
Model 3 Flashes .102 .1% .137 92 .712
Model 4 Tones .106 .5% .524 92 .471

Note. Hierarchical multiple regressions—dependent variable: mathematical composite index; Controlling
variables: age and nonverbal IQ. Predictors were tested in separate regressions models (Models 1, 2, 3, and 4);
controlling variables were entered as a block in the first step. Significant predictors are highlighted in bold.
� p 	 .05.

Table 5
Separate Contribution of Spatial Numerosity Thresholds on Children Math

Predictor R2 Rchange
2 Fchange df p

Controlling variables: Age, nonverbal IQ, and dots paired comparison

First step
Age and nonverbal IQ and dots paired comparison .156 — 5.620 91 .001

Model 1A
Spatial estimation .202 4.5% 5.124 90 .026�

Controlling variables: Age, nonverbal IQ, and spatial numerosity estimation

First step
Age and nonverbal IQ and Spatial estimation .161 — 5.817 91 .001

Model 1B
Dots paired-comparison .202 4.1% 4.607 90 .035�

Note. Hierarchical multiple regressions—dependent variable: mathematical composite index. Predictors were
tested in separate regressions models (Model 1A, 1B); controlling variables were entered as a block in the first
step. Significant predictor highlighted in bold.
� p 	 .05.
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performance. This last result suggests that ANS may act as a
start-up tool for math achievements until symbolic quantity are
precisely mapped onto nonsymbolic quantities; but later on the two
processes may become independent. However, given that adult
math skills had less intersubject variability than children, we
cannot completely rule out the possibility that the lack of correla-
tion was simply due to an insufficient variability level in one of the
dimensions. In addition, we had only one test of math skills for the
adults, which may have been insufficient. Previous studies have
reported both nonsignificant correlations (Inglis, Attridge, Batch-
elor, & Gilmore, 2011; Krueger, 1984) and significant correlations
(Chen & Li, 2014; Fazio et al., 2014; Libertus, Odic, & Halberda,
2012; Schneider et al., 2017; Tibber et al., 2013) between spatial
processing and math abilities in adulthood. There is also consid-
erable variability in the correlations observed in studies on chil-
dren (Anobile et al., 2013; Libertus, Odic, Feigenson, & Halberda,
2016; Piazza et al., 2010). Some of the discrepancies in these
findings may be explained by the different tests used to assess
formal math abilities (Lourenco, Bonny, Fernandez, & Rao, 2012).
For this reason in the present study we used the same tests (mental
addition) to assess math capacities in both children and adults.
Furthermore, Bonny and Lourenco (2013) found a clear link be-
tween math and ANS acuity only in lower math preschoolers, with
far less evidence for this relation among the higher performers.
However, Wang, Halberda, and Feigenson (2017) found robust
correlations when considering only math-gifted adolescents, sug-
gesting that the correlation is robust even in high performers.
There is clearly a good deal of inconsistency in the literature at this
stage.

Why does spatial simultaneous visual numerosity, but not se-
quential numerosity perception correlate with child math abilities?
Many works have highlighted the intimate relationship between
spatial reasoning and math abilities, leading to the hypothesis that
numbers are represented as spatially organized along a “mental
numberline” (Dehaene, 2011; Dehaene & Brannon, 2011; De-
haene, Izard, Spelke, & Pica, 2008; Galton, 1880; Hubbard, Pi-
azza, Pinel, & Dehaene, 2005). Correlational studies demonstrated
that higher accuracy levels for mapping numbers onto spatial
position (numberline tasks) but also nonnumerical spatial reason-
ing abilities are associated with higher formal math skills (Ashke-
nazi & Henik, 2010; Booth & Siegler, 2006; Geary, Hoard, Byrd-
Craven, Nugent, & Numtee, 2007; Geary, Hoard, Nugent, &
Byrd-Craven, 2008; Gunderson, Ramirez, Beilock, & Levine,

2012; Siegler & Booth, 2004; Siegler & Opfer, 2003). Remark-
ably, the link between visuospatial processing and math abilities
has been reported since the first year of life: visuospatial abilities
of 10-month-old infants, indexed by preferential looking time at
streams of objects containing spatially mirrored objects, predicts
their formal math abilities 3 years later (Lauer & Lourenco, 2016).

Basic numerosity perception, as well as many other visuospatial
abilities, relies on brain regions that are also activated by math
tasks. These areas—mainly frontoparietal—are also involved in
time processing, space perception, geometrical relationships, visu-
ospatial analogies, and are also activated by the mere sight of
numbers and mathematical formulas, simple mental calculation,
and high-level abstract mathematical reflection (Amalric & De-
haene, 2016; Dehaene, 2011; Watson & Chatterjee, 2012; Harvey,
Fracasso, Petridou, & Dumoulin, 2015; Harvey, Klein, Petridou, &
Dumoulin, 2013; Hubbard et al., 2005; Nieder, 2016; Piazza,
Pinel, Le Bihan, & Dehaene, 2007; Pinel, Piazza, Le Bihan, &
Dehaene, 2004). Moreover, skilled mathematicians, when engaged
in difficult mathematical tasks, recruit additional visual areas at the
expense of others, including reduced activation to faces (Amalric
& Dehaene, 2016). The human-specific development of formal
math may have been rooted and may have taken advantage of brain
areas that were already processing those visuospatial features that
lends to math analogies. In line with this, studies searching for the
origin of math thinking found that language seems to have a less
or different weight than visuospatial skills (Dehaene, Spelke, Pi-
nel, Stanescu, & Tsivkin, 1999; Pica, Lemer, Izard, & Dehaene,
2004; Dehaene et al., 2008; Dillon, Huang, & Spelke, 2013). More
specifically, training approximate calculation (e.g., estimate the
result and indicate the closest, or decide whether 8 is closer to 9 or
5) in bilingual participants does not suffer any language-shifting
costs, as do exact calculations; and approximate calculation tasks
activate the same brain areas (around the intraparietal sulcus) that
are active during a variety of visuospatial tasks (Dehaene et al.,
1999).

We recently replicated this pattern of results showing that ap-
proximate math but not exact calculation correlates with children’s
math abilities (Anobile et al., 2013). It is worth noting that also in
the present study we measured approximate tasks in formal math,
so the possibility remains open that sequential numerosity may be
related to other kinds of math components. For example, as audi-
tory sequences are important for language, and it has been recently
reported that changes in auditory numerosity elicit activation in the

Table 6
Contribution of Approximate Number System Components on Adult’s Math

Model Predictor R2 Rchange
2 Fchange df p

First step Nonverbal IQ .157 — 6.718 36 .014�

Spatial (dots) .157 0% .001 35 .972
Model 1 Discrimination .2 4.3% 1.891 35 .178
Model 2 Estimation .157 — 6.718 36 .014�

Temporal (sequences)
Model 3 Flashes .18 2.3% .966 35 .333
Model 4 Tones .2 4.2% 1.856 35 .182

Note. Hierarchical multiple regressions—dependent variable: mathematical composite index; Controlling
variable: nonverbal IQ. Predictors were tested in separate regressions models (Models 1, 2, 3, and 4); controlling
variables were entered as a block in the first step. Significant predictors are highlighted in bold.
� p 	 .05.
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same parietal areas activated by visual-spatial numerosity (Wang,
Uhrig, Jarraya, & Dehaene, 2015); a speculative hypothesis is that
auditory sequential numerosity sensitivity might be related to
language-based arithmetic skills (e.g., Multiplication table).

How specific is the link of spatial simultaneous numerosity and
math? Tibber et al. (2013) found that higher performance on a task
requiring object orientation perception and reproduction was re-
lated to higher math skills, opening the possibility that math may
be unspecifically related to higher visuospatial sensitivity. How-
ever, much evidence suggests that it may be not the case, indeed,
sensitivity to visual object distance (density) was seen to be
unrelated to math (Tibber et al., 2013). Piazza et al. (2013) showed
that increase in formal math knowledge is associated with an
increase in spatial numerosity discrimination sensitivity leaving
unchanged the precision to discriminate object size. Anobile et al.
(2013) showed that sensitivity to the numerosity of relatively
sparse but not dense patterns of objects was correlated with math
and visual motion direction sensitivity, was not correlated with
math. Here we replicated Piazza et al. (2013) showing that object
size discrimination does not correlate with formal math.

It is also important to note that size discrimination showed
intersubject variability and higher levels of precision compared
with both simultaneous numerosity tasks (for both children and
adults, all p 	 .01). Even if this evidence should be considered as
pointing to different developmental processes underling numeros-
ity and size perception, it may also have obscured the correlation
between size and math. However, object size discrimination is
particularly suitable to serve as such a control, as it shares with
numerosity many key perceptual and task-related features: it in-
volves spatial visual stimulation, continuous magnitude encoding,
an identical decision process (“which is larger”), a similar way of
responding (“left–right”), and the same presentation format (rapid,
peripheral and simultaneous). Furthermore, size and numerosity
are both encoded in the parietal cortex (Castaldi, Aagten-Murphy,
Tosetti, Burr, & Morrone, 2016; Harvey et al., 2013; Nieder, 2016;
Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004), and share highly
overlapping representational areas (Harvey, Fracasso, Petridou, &
Dumoulin, 2015; Pinel et al., 2004). Nevertheless, Lourenco and
colleagues (Lourenco & Bonny, 2017; Lourenco et al., 2012)
found that precision in cumulative area discrimination correlates
with numerosity discrimination, geometry and math in both adults
and 5-year-old children. These results suggest that analog magni-
tude and math achievement may correlate with nonnumerical
dimensions such as cumulative area, even at the early stages of
development, arguing against an exclusive role for nonsymbolic
numbers in promoting math learning. While this is interesting, it
should be noted that cumulative area is a task requiring ensemble
perception, like numerosity. On the other hand, our area task did
not require integration of multiple items, which may explain the
apparently conflicting result. Moreover, recent evidence suggests
that numerosity, area and other features (like density) develop
independently of each other, with different developmental trajec-
tories, and different links with other math capabilities (Odic et al.,
2013; Anobile, Castaldi, Turi, Tinelli, & Burr, 2016). However, a
comprehensive review of relationship between continuous and
discrete quantities goes far beyond the scope of this study. We
refer interested readers to Leibovich et al. (2017) and commentar-
ies on that article for further discussion.

. The results show that while WFs for all the magnitude-estimation
tasks positively correlated with each other in both children and adults,
magnitude estimations correlate with paired comparisons to a lesser
extent. More precisely, although children showed some degree of
between-task generalization (precision in paired comparisons corre-
lates with sensitivity for estimation of dot-cloud and tones numeros-
ity), this pattern of results did not hold for adults. Taken together,
these findings suggest that ANS may start as a highly generalized
system, which subsequently segregates the various components of
numerical processing during the development. The children tested
here varied in age from 7 to 8 years, so the hypothesized specializa-
tion should take place during later developmental stages. Given that
also in the adult group most of the intertask correlations were highly
significant, and that both intratask reliability indexes and intersubjects
variability were similar across perceptual tasks, we believe that the
lack of correlation reflects a genuine lack or interrelationship.

As mentioned before, only paired comparison and estimation of
simultaneous spatial arrays correlated with child math skills. How
can this result be reconciled with the fact that children who are
more precise at estimation of simultaneous stimuli also perform
better with sequential numerosity tasks (sequences of flashes or
sounds)? Our results suggest that two kinds of connections may
link different symbolic and nonsymbolic math-related compe-
tences: one sensory (or decision) based, linking all the numerical
magnitude estimation performances; and one math-specific, link-
ing only spatial simultaneous numerosity (for all tasks) with sym-
bolic math achievements (see Figure 7). Another (not mutually
exclusive) possibility is that the correlations between sequential

Figure 7. Illustrative representation of the relationship between numer-
osity perception and children math skills. Nonsymbolic (numerosity) and
symbolic (math) numerical abilities may be linked by two different corre-
lations. On one side, a sensory link (dotted line) ties together the perception
and estimation of numerosity regardless of its format (temporal or spatial)
and sensory modality (visual or auditory). However, only sensory precision
in spatial numerosity estimation and paired comparison relates to formal
math abilities (gray circle line). We call this a “numerical link,” as it gives
a selective numerical meaning to spatial ensembles visual encoding. See
the online article for the color version of this figure.
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and simultaneous estimations were driven by shared verbal map-
ping processes transforming numerosity into number words. Un-
fortunately our battery of tests does not allow us to control for this
covariate.

As this is the first study to measure the link between sequential
numerosity and math, replications and extensions would be re-
quired before making very strong conclusions. However, our study
confirms the idea that language-based human specific math abili-
ties may have been built on top of a basic, ancient and generalized
numbersense; but we add to this, showing that humans had devel-
oped a selective link between this symbolic system and visuospa-
tial encoding of objects ensembles. Furthermore, this study opens
new testable experimental questions: in congenitally blind chil-
dren, who have not had visual experience, does the brain link
sequential auditory numerosity and formal math? Another open
question is how nonvisual spatial numerical encoding—such as
tactile—relates to math.

Conclusions

The main finding of this study is that thresholds for judging the
numerosity of temporal sequences do not relate to math skills,
neither in children nor in adults, while child mathematical cogni-
tion correlates well with spatial (simultaneous) numerical encod-
ing. These results are in line with the fascinating idea that human
mathematical thought arises from the cultural recycling of ancient
brain areas representing those basic features more naturally linked
to math concepts, such as visual space (Dehaene, 2011; Dehaene et
al., 1999; Dehaene & Cohen, 2007). Moreover, these results may
be useful for teachers, clinicians and those who teach and reinforce
formal mathematical learning using its nonsymbolic counterpart:
numerosity. The present study, together with other evidence, sug-
gests that to stimulate math achievement it may be more beneficial
to rely on spatial, rather than temporal processing.
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