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[Plates 1-4]

This paper presents a simple and biologically plausible model of how
mammalian visual systems could detect and identify features in an
image. We suggest that the points in a waveform that have unique
perceptual significance as ‘lines’ and ‘edges’ are the points where the
Fourier components of the waveform come into phase with each other.
At these points ‘local energy’ is maximal. Local energy is defined as the
square root of the sum of the squared response of sets of matched filters,
of identical amplitude spectrum but differing in phase spectrum by 90°:
one filter type has an even-symmetric line-spread function, the other an
odd-symmetric line-spread function. For a line the main contribution to
the local energy peak is in the output of the even-symmetric filters,
whereas for edges it is in the output of the odd-symmetric filters. If both
filter types respond at the peak of local energy, both edges and lines are
seen, either simultaneously or alternating in time. The model was tested
with a series of images, and shown to predict well the position of perceived
features and the organization of the images.

INTRODUCTION

To function efficiently within reasonable informational limits, any visual system
(biological or artificial) must simplify the image and record it in an economical
‘token’ form (see, for example, Barlow 1959; Marr 1976). Most researchers agree
that edges and lines are particularly rich sources of image information, and that
organization of these features could provide the basis for an efficient description
of the image. Several models of edge and line detection have been developed.
An early idea was that there may exist in the human visual system detectors
specialized to respond to edges and lines. Tolhurst (1972) and Kulikowski & King-
Smith (1973) suggested that visual detectors may take advantage of the local
symmetry of these features: a line is an even-symmetric function (f(x) = f(—x),
choosing the line centre as origin), and an edge an odd-symmetric function
(flw) = —f(—x), choosing the mean luminance crossing as origin). Detectors with
even-symmetric line-spread functions, or receptive fields, will respond best when
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centred on a line; those with odd-symmetric fields respond best when centred
on an edge.

Psychophysical evidence is consistent with the suggestion that visual detectors
have even- and odd-symmetric receptive fields (see, for example, Tolhurst 1972;
Shapley & Tolhurst 1973; Kulikowski & King-Smith 1973; Field & Nachmias
1984 ; Burr et al. 1988 ; but see also Field & Tolhurst 1986). However, the mech-
anism by which the hypothetical detectors may locate edges and lines is not
obvious. The problem is that an edge-detector (odd-symmetric field) will respond
both to an edge centred on the receptive field and to a line positioned slightly away
from the field centre. The inappropriate response to a line can be almost as great
as the appropriate response to an edge. The same argument applies to line-
detectors, with even-symmetric fields (examples of output from even- and odd-
symmetric operators are shown in figure 3). Thus the two detectors do not give an
unambiguous response, but one which must be decoded by additional rules or
restraints. This limitation is particularly evident with algorithms designed for
robotic vision. For example, Canny (1983) used two operators of even and odd
symmetry and searched for local maxima. However, the same feature was marked
by both operators, usually at different points.

Some models of human feature detection employ only one operator. For
example, Marr & Hildreth (1980) use as operators the Laplacian of a Gaussian
function with different space constants, and search the output for coincidence of
zero-crossings across scales. This model is designed to detect edges, not lines. The
requirement for coincidence of zero-crossings across scales eliminates the
inappropriate marking of lines, which occur at different positions at different
scales. However, this restriction can also eliminate real edges under certain con-
ditions. One example is when two edges occur nearby : zero-crossings at larger
scales will occur midway between the edges. Other examples where the model fails
will be presented later.

These are several problems inherent in most existing models of feature detection.
A linear filter operation, the first stage of most models, creates ‘ringing’, which
can create spurious peaks and zero-crossings. These can be difficult to distinguish
from peaks or zero-crossings associated with real features. Low amounts of visual
noise can also cause spurious responses, again difficult to remove. Besides the
technical problems outlined above, a deeper theoretical limitation is that there
exists no satisfactory mathematical definition of what constitutes for the visual
system a line or an edge.

In this paper we propose a new model of feature detection, based on a new
definition of lines and edges. The definition is best understood by considering the
local Fourier representation of edges and lines. In Fourier space, the symmetry of
edges and lines is reflected in the phase spectrum. An isolated line (even-symmetric
function) expands to a series of cosine components (choosing the line centre as
origin), with all sine components at zero amplitude. An isolated edge (odd-
symmetric function) expands to a series of sine components (choosing the mean
luminance crossing point as origin), with all cosine components at zero amplitude.
Thus when the edge or line is chosen as origin, the Fourier phase spectrum is
constant : zero at all frequencies for a line and 7t/2 (or 90°) for an edge. For other
choices of origin the Fourier phase spectrum will not be constant. However, for
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any origin, at the point of an isolated line or edge the arguments (which can also
be termed arrival phases) of all Fourier harmonics will be identical.

This fact suggests a potentially useful property of lines and edges: they occur
at points of the waveform where the arrival phases of the Fourier components are
maximally similar. The value of the average arrival phase at that point determines
the nature of the feature: values near zero correspond to a line, and values near
n/2 correspond to an edge. In previous publications (Morrone et al. 1986; Ross
et al. 1988) we have shown that this definition predicts successfully ‘Mach bands’,
the illusory light and dark stripes seen where luminance gradients meet plateaux
(Mach 1865). At the points where the bands are seen, the arrival phases of the
Fourier components are maximally similar, and near zero, even though there is no
line-like discontinuity in the luminance profile at the point where the bands are
seen. That the definition applies to illusory as well as real features suggests that
it may have general validity.

The present study has two goals: to test whether ‘congruence of arrival phase’
may be a useful and general definition of visual features; and to devise a bio-
logically plausible model of feature detection based on this definition. The
following section introduces the model, shows mathematically how it relates to the
phase definition of features, and gives the details of the parameters chosen for
implementation. The remainder of the paper reports a series of demonstrations
and experiments that illustrate the relation between arrival-phase congruence and
the perception of visual features. The images used in the study were created by
manipulating the phase spectrum of a simple one-dimensional waveform, the
squarewave. For each image, we test the performance of the model and show that
it predicts successfully the position and nature of the main features.

MobpEL

The basic operators of the model are pairs of filters of equal amplitude spectra
but orthogonal in phase: one has a Fourier phase spectrum of 0 (cosine phase), the
other a Fourier phase spectrum of /2 (sine phase). The line-spread functions of
the filters are symmetric, one with even symmetry (F,) the other with odd
symmetry (F,). F, is the Hilbert transform of F, (see, for example, Garnett 1981).
Provided that the functions are contained in L? space (functions for which the
integral of their square is finite) they will be orthogonal. That is

fFe(x) F (x)dx = 0. (1)
The same is true for the response of the two filters to any image I(x).

Given that O.(x) = JFe(x—g)I(C) d¢,

. (2)
Oy(x) = fFo(x_ 919 d¢,

it follows that fOe(x) O,(x)dx = 0. (3)
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The proof of orthogonality follows from the fact that the even and odd line-spread
functions are the Hilbert transforms of each other (see, for example, Garnett 1981)
and that the Hilbert transform is a skew-symmetric operator.

In the space spanned by the orthogonal functions O, and O, the response of each
filter is represented by a curve parametric in x, given by equation (2) (see figure 1).
By considering a polar coordinate representation, the same information can be
described by the function’s modulus £ and argument 4 given by:

@) = VI0(@)+03@)], |

(4)
A(x) = arctan [Oo(x)/Oe(x)].J
We term the function E(x) the local energy function (following Adelson & Bergen
1985): it represents the vector length of the combined response at the point z.
Figure 1 illustrates how the model relates to the phase of the Fourier components
of an image. A periodic function /(x) can be expanded as a series of cosine harmonic
components of amplitude a, and phase ¢,. That is,

M8

I(x) = Y a,cos(nzw+d,), (5)

n=1

where o is the fundamental frequency.
The output functions O, and O, of the filters to the input function I(x) will
be

0, = Y b,cos(nxw+¢,),
n=1

(6)

> —b,sin (nzw+¢,),

n=1

0)

(o]

where b, is the amplitude of each harmonic of the output functions, given by the
product of the input amplitudes a, and the filter gain at frequency nw. Note that
the even-symmetric filters do not alter the input phase ¢,, whereas the odd-
symmetric filters cause a phase shift of n/2.

In the space spanned by the functions O, and O,, the nth harmonic component
of the filtered output is represented by a vector of length b, and argument
A,(x) = (new+¢,). For each spatial position «, the harmonic components sum
vectorially to a resultant vector of length E(z) (local energy) and argument A(x).
Because the amplitudes b,, are independent of the parameter z, local maxima of
the energy function E(x) occur at the points where the argument 4,(x) of the
harmonics is most similar. The argument 4, (x) can also be referred to as the arrival
phase of the harmonic at that point (not to be confused with ¢, the Fourier phase
of the harmonic, which depends on the choice of origin). Thus local maxima of the
energy function E(x) occur at points where the arrival phases are most similar. At
the points of maximum local energy, the average arrival phase is given by the
argument 4(x). In the example of figure 1, the argument is n/2 and 3n/2 at the
peaks, indicating a positive- and negative-going edge.

We suggest that the visual system could locate features of interest by searching
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Ficure 1. Illustration of the local energy function, and how it relates to Fourier phase. (a) The

curves show the responses of a pair of matched filters to a squarewave. The filters are centred
at 2 cycles per period with half-bandwidth of 1 octave, and are in quadrature phase. Their
responses (O, and O,) are given by

O (x) = 4a/n 3, 1/kcos (2nkz/T —mn/2) exp{—[In (k/P)]?/2[¢qIn (2)]2},
kwx (F 1)
O,(x) = 4a/n 3 —1/ksin (2nkz/T—n/2) exp{—[In (k/P)]?/2[qIn (2)]2},
k=1
for k odd integer, where 7' is the period of the squarewave, a is its amplitude, P the peak
spatial frequency of the filters and ¢ their bandwidth (in octaves). As the functions are
orthogonal, the same information can be represented by plotting O, against O, for each
value of x. (b) The plot is characterized by its polar coordinates £ (local energy) and
argument 4. Note that £ has maximum length when 4 = + /2. (¢, d) The contribution of
single Fourier components of the filtered squarewave for two values of . For z = T /2, the
arguments A, of all components are 7/2. The vectorial sum of the components gives the
maximum value of £ (1.3a). For « = 7'/3, the arguments 4, vary from one component to
another, so the vectorial sum will give a reduced value of E. In this case, the vectors sum
to produce local energy E of 0.6a, and argument 4 of 1.96. £ will be minimal for z = T/4,
where the first and third harmonics oppose each other.
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for maxima of local energy, and identify the feature type by evaluating the
argument at that point. The following section gives details of how the model was
implemented, and examples of its operation on simple images.

Implementation

In principle, the model could be implemented with one set of broadband filters
that span the visible spectrum of spatial frequencies (as demonstrated by Morrone
& Owens (1987)). However, we are interested in developing a model that parallels
as closely as possible the mechanisms of mammalian visual systems. Evidence
from both electro-physiological and psychophysical research suggests that indi-
vidual visual filters span only a portion of the visible spatial frequency spectrum,
and vary in spatial frequency preference and bandwidth (Maffei & Fiorentini
1973; Movshon et al. 1978a, b; Schiller et al. 1976; Blakemore & Campbell
1969).

We implement the model with four sets of filters, illustrated in figure 2a.
Filter shape and width was estimated from the masking and summation data of
Anderson & Burr (1985, 1987). The data were fitted reasonably well by inverted
U-shaped symmetric curves expressed as a Gaussian function of logarithmic

frequency R(w) = exp{—[In (0/P)]2/2[qn (2)]2}, (7)

where P is the peak spatial frequency and ¢ the half bandwidth in octaves at 0.6
height. The bandwidth of the filters decreased slightly with spatial frequency. The
filters were positioned so that when summed they formed a filter of 7 octave
bandwidth, with ripple less than 2 dB. The summed filter is not intended to reflect
the human contrast sensitivity function, or the supra-threshold modulation
transfer function (Georgeson & Sullivan 1975), but to provide a reasonably flat
filter over the frequency range spanned by human vision. Four is the minimum
number of filters necessary to obtain a reasonably flat summed filter, but is not
intended to reflect the number that may actually exist in human vision (cf. Wilson
et al. 1983). In fact, the exact shape, bandwidth and number of filters are not at
all crucial for the performance of the model (see Discussion).

On the basis of psychophysical evidence (Field & Nachmias 1984 ; Burr ef al.
1988), the phase spectrum of the filters was assumed to be constant, either at 0 or
n/2. Inverse Fourier transformation of the tuning functions gives the receptive
field profiles shown in figures 2b and 2¢ for two of the tuning curves. Two
differences are evident between the receptive fields of high and low frequency
preference. Those preferring high spatial frequency have more ripples (resulting
from the narrow tuning), and higher peak activity. The receptive fields shown here
are similar to those of simple cells in cat and monkey primary visual cortex (Hubel
& Wiesel 1962, 1977 ; Kulikowski & Bishop 1981), and are also consistent with the
receptive field size and shape inferred from psychophysical summation studies
(Anderson & Burr 1987).

Figure 3 gives examples of the implementation of the model for three input
waveforms: a squarewave (3a), a series of lines (3b) and a trianglewave (3¢). Each
input waveform was filtered by the four pairs of matched filters, to produce eight
output waveforms (figure 3g—i). At each scale the response of the matched filters
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F1GURE 2. (a) Spatial frequency tuning (gain) of the four sets of filters used in the simulations.
Their frequency response R(w) is given by

R(w) = exp{—[In (/P)]*/2[gIn ()]} (F 2)

where P is the peak spatial frequency and g the half bandwidth in octaves at 0.6 height
(equation (7) in text). The centre frequencies P (in ¢ycles per period of input waveform) and
bandwidths ¢ (in octaves) were, respectively: 1, 1.2; 5.7, 0.9; 27.4, 0.73; 65.2, 0.57. Band-
width decreased slightly with increasing spatial frequency, in agreement with psycho-
physical estimates. (b, c) Impulse response functions of the second lowest (b) and second
highest filter (c). The functions on the left (odd-symmetric) assume a constant phase
spectrum of m/2 and those on the right (even-symmetric) a constant phase spectrum of 0.
The calibration u on the left represents one unit of amplitude.
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was squared and summed, to produce four separate local energy functions, one for
each scale. For all three waveforms, the local energy functions (figure 3d—f) have
only two peaks per period, at all scales. The peaks correspond to edges, lines or the
triangle apices. The sum of the energy across scales will also peak at these
points.

Thus at each scale all types of features illustrated here could be detected and
located by determining the maxima of the local energy function. All maxima are
uniquely associated with position of features. However, if one considers the
response of only the even-symmetric operator or of only the odd-symmetric
operator, the maxima (or zero-crossings) do not all correspond to features. Any
model based on only one class of operator must have additional rules for dis-
criminating which maxima or zero-crossings correspond to positions where features
occur, discarding spurious maxima introduced by the filter operation.

The local energy function locates the position of image features, both edges and
lines, but gives no information about the type of feature. To evaluate the nature
of the feature, it is necessary to consider the argument (4 (x) of equation (4)). This
can be achieved by measuring the output of the matched filters before the squaring
operation. We suggest that it is sufficient to consider the output of these filters
only at the points of local energy maxima. A response from filters with even-
symmetric fields will signal a line; a response from filters with odd-symmetric
fields will signal an edge. The polarity of the response signals the polarity of the
line or edge. For example, the odd response to the squarewave is either maximal
or minimal at the energy peaks (indicating negative- and positive-going edges
respectively), whereas the even response is zero (at all scales). For the delta
function, the reverse holds: the even response is maximal (or minimal), whereas
the odd response is zero. Again the polarity of the response gives the polarity of
the line. The trianglewave behaves similarly to the delta function, and a strong
line or Mach band is perceived at the apices (see Morrone et al. 1986 ; Ross et al.
1988).

To summarize, we suggest that the points in a waveform that have unique
perceptual significance as ‘lines’ and ‘edges’ are the points where the Fourier
components of the waveform come into phase with each other. These points
correspond to maxima of local energy, defined as the Pythagorean sum of the
output of pairs of matched filters with even- and odd-symmetric fields. The
following sections test these assertions with a series of demonstrations and
experiments with images derived from simple one-dimensional patterns.

METHODS

The stimuli used in this study were generated by computer (NCR Tower) from
the formulae given in the appropriate sections, and displayed on a black and white
video screen (Sony, PVM-91CE). The resolution was 512 x 512 pixels, with 256
grey levels per pixel. To avoid aliasing and ringing effects (such as the Gibbs
phenomenon, see Hewitt & Hewitt (1979)), Fourier components above the Nyquist
frequency limit were rejected, and the amplitude spectra multiplied by a shallow

Gaussian G(k) G(k) = exp (_k2/20_2) (8)
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where k is an integer multiple of the fundamental harmonic frequency. For all
stimuli except figure 6, o was half the Nyquist frequency. For figure 6, o was 2
cycles per period. All computations were done with a modified version of the HIPS
image-processing system (Landy et al. 1984a, b).

Waveforms were displayed on the video screen, and photographed. Observers
were invited to view both the screen and the photographs and describe their
appearance. Many observers were initially unaware of the aims of the experiment,
and of the profile of the patterns they were viewing.

For experiment 1, observers were required to indicate the apparent position of
perceived lines and edges on a waveform. The video monitor was optically super-
imposed on an oscilloscope which displayed a small dot. Observers could adjust
the position of the dot to match the apparent position of lines and edges, by turning
a potentiometer. A small computer read the position of the potentiometer and
moved the dot horizontally. The stimulus occupied 10.5 cm X 10.5 cm on the
monitor (subtending 2° at 3 m viewing distance) and had mean luminance of
250 cd m™2.

RESULTS AND SIMULATIONS

This section examines the perceptual effects of manipulation of the phase and
amplitude spectra of squarewaves, and compares these with predictions of the
proposed model. The Fourier expansion of a squarewave (choosing as origin the
negative to positive transition) can be expressed as

S(x) = L,+4a/n ¥ 1/kcos 2nkx/T—m/2), 9)
k=1

where k is an odd integer, L, is the mean luminance, T'is the period, and a is the
mean-to-peak amplitude of the squarewave, and also the standard deviation of the
luminance of the waveform, which does not change with manipulation of the phase
spectrum (from Parseval’s theorem). For this reason, we define contrast of all
waveforms as the ratio of standard deviation to mean (a/L,). For squarewaves,
this ratio is equivalent to Michelson contrast.

Inspection of equation (9) shows that the argument, or arrival phases, of all
harmonics (given by 2nkx/T —mn/2) are identical at two points per period: at the
start of each period (x = 7', for integer ¢) they are all —m/2, and at the centre of each
period (¢ = T(i+1/2)) they are © /2. These points occur at the edges of the
squarewave.

Demonstration 1

The purpose of this experiment was to demonstrate the relation between con-
gruence of arrival phase and the appearance of visual features, and to test the
performance of the model on these images. The waveforms of figure 4, plate 1, all
have the amplitude spectrum of a squarewave, but differ in phase. For each
waveform, the Fourier phases of all cosine harmonics were ¢ at origin. The general
equation for the waveforms is

fla) = Ly+4a/n § GQ(k)/k cos 2nka/T — ). (10)

k=1
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FicUre 4. Reproductions of two periods of a grating with luminance profile f(x) defined by

f@) = Ly+4a/n Y, G(k)/k cos (Crka/T — ), (F 3)
k=1

for k odd integer and 0 < o < 27'. L, is mean luminance, @ amplitude, 7' period and ¢ phase
(equation (10) in text). The origin is at the left-most point of each pattern. Phase ¢ was
n/2,m/3, n/4 and 0 (90°, 60°, 45° and 0°) for (a), (b), (¢) and (d) respectively. For all figures,
the major features seem to occur in the same position, despite the differences in luminance
profiles. The features occur at the only points on the waveform where the arguments (or
arrival phases) of all Fourier components phases are identical : at 2 = 0,7/2,T,3T/2 and
T. The nature of the feature changes progressively from edge to bar, with decreasing ¢.

(Facing p. 230)
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(®)

F1GURE 6. (@) Waveform with constant Fourier phase spectrum of m/4, filtered with the low-pass
Gaussian filter of equation (8), with o = 2 cycles per period. Underneath the photograph
are the original waveform, its Hilbert transform and the local energy profile. Also shown are
the positions of maximum luminance slope (Z), peak in local energy (£), peak in luminance
(P) and the centroid (C) of the mean-luminance bounded mass (from left to right). After
observing the photograph for a while, its appearance seems to alternate from a squarewave
configuration to a series of lines. Observers were asked to indicate separately the apparent
position of the edges of the squarewave and the centre of the lines. The means of ten settings
for two observers are shown by the open circle (for lines) and closed circle (for edges). Both
apparent positions are closer to the local peak in energy than any of the other predictions.
The reader can readily verify this result. ae ot
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FicUure 8. Two periods of a waveform whose luminance profile f(x) is given by

flx) = L,+2a/n Y, G(k) cos (2nkx/T — @), (F 4)
k=1
for k odd integer and 0 < < 27'. L, is mean luminance, @ amplitude and 7" period (equation
(11) in text). Phase ¢ was /2, /3, ©/4 and 0 (90°, 60°, 45° and 0°) for (@), (b), (c) and (d)
respectively. Like the stimuli of figure 4, features were seen at the points of the waveform
where all harmonics had identical phase.
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Ficures 10 AND 12. For description see opposite.
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Where £ is an odd integer, a is the standard deviation of the luminance values of
the waveform and G(k) is the smoothing Gaussian of equation (8). The value of ¢
determines the phase at origin.

Figure 4 reproduces two periods of the patterns at about 6% contrast (a/L,),
with their luminance profiles. Observers were asked to indicate the major features
of the patterns (presented without luminance profiles), and describe the nature of
the features. Figure 4a (the squarewave) was seen as four broad stripes separated
by three clear edges, two negative-going and one positive-going. The edges are
considered to be the features of importance, separating regions of homogeneous
luminance. Figure 4d (¢ = 0°) also had three features, but the features appeared
to be (slightly blurred) lines, two dark and one bright. The regions between the
lines seemed fairly homogeneous. For figures 4b and 4¢ (¢ = 60° and 45°), observers
reported three edges with superimposed lines, somewhat like a Mach band. Some
(but not all) observers claimed that the patterns were unstable, with the relative
salience of edges and lines fluctuating rapidly over time. Most observers reported
an impression of depth in figure 4b-d, with corrugations like a radiator. Again, this
impression was often unstable, giving way to a flat interpretation of edges and
lines.

It is interesting that varying ¢ did not alter the apparent position of the features.
Varying the phase by ¢ shifts all harmonics by an amount inversely proportional
to spatial frequency. For the fundamental the shift is ¢7'/2r, which equals 7'/4 in
the extreme case. However, as the points where all harmonics come into phase are
the same for all patterns, the features always occur at the same position. What
changes is the type of feature.

DESCRIPTION OF PLATE 4

Fiure 10. One cycle of gratings derived from squarewaves, with phase randomized over a
given range. The equation for their luminance profile is

f@) = L,+4a/n 3 G(k)/k cos 2rkx/T — /2 —yr(k)), (F 5)
k=1
for k odd integer and 0 < 2 < 7. L, is mean luminance, a amplitude and 7' period (equation
(12) in text). r(z) varies randomly over the range —0.5-0.5 ¥, which determines the range
of randomization, was n/4, ©/2, & and 2 for (a), (b), (¢) and (d) respectively. Except for (d),
where the phases of all harmonics except the fundamental were completely random, the
edge remains, embedded in varying amounts of noise.

Ficure 12. Four periods of a two-dimensional waveform whose luminance distribution fle,y) is
given by

f@,y) = Ly+4da/n T G(k)/k cos {2n{(lyl/2T — 1/2) + k(1/8—|y|/AT) + ke/T]},  (F 6)
k=1

for k odd integer, 0 < 2 < 47 and —7 <y < T. L, is mean luminance, a amplitude and 7'
the horizontal period (equation (13) in text). The value of the argument at the point of
arrival phase congruence changes continuously from the middle to the top and bottom
rows. In addition, there is a group phase advance, which shifts the points of phase
congruence of each row. Close up, the organization of the pattern follow the points of phase
congruence, which form a chevron pointing left. From a distance, where the higher har-
monics are unresolvable, the organization is dictated by the average luminance, which
points rightwards.
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FIcURE 5. Sums of the convolutions of the waveforms of figure 4 with even-symmetric and odd-
symmetric receptive fields of four scales (from figure 2). As the combined tuning of the
receptive fields spans the whole range of the frequency content of the waveforms, the
summed even-symmetric responses reproduce almost perfectly the original waveform and
summed odd-symmetric responses of its Hilbert transform. Also shown are the local energy
profiles, summed over all scales. Note that the local energy is identical for all the waveforms,
and peaks at the visually salient feature. Whether the feature appears to be a line or an edge
depends on the relative strengths of even to odd responses at those points.

Simulation

Figure 5 shows the sums of the convolutions of the waveforms of figure 4 with
the even receptive fields of four scales (top profiles), and with odd receptive fields
(middle profiles). As the receptive fields combine to form an almost flat filter, the
summed even response reproduces almost perfectly the original waveforms, and
the summed odd response its Hilbert transform. Also shown are the summed
energy profiles, calculated by the method described in the Model section. The
general form of the energy profile was similar at all scales, so we depict here only
the sum. Despite the differences in the original waveforms, the local energy
functions are all identical. They all peak at the points where the arrival phases of
the harmonics are identical, irrespective of the value of the arrival phase at those
points.

According to our model, local peaks in the energy function signal visually salient
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features. These are interpreted as edges or bars (or both), depending on the
strength of response from the odd and the even receptive fields at the points where
local energy peaks. For the squarewave (¢ = m/2), the odd response is high at the
peaks and the even response zero, indicating an edge. When ¢ = 0, the even
response is maximal and the odd response zero, indicating a line. At intermediate
values of ¢, both even and odd detectors respond, signalling both an edge and line
of different relative strength. This predicted reasonably well the impressions of
most observers.

What the model does not explain is why an impression of depth occurs with
the intermediate values. The connection between apparent depth and phase is
interesting, and bears further investigation. It may be connected with light
distributions that occur with a three-dimensional object in natural lighting
conditions.

Experiment 1

Some observers reported perceptual instability in the previous demonstration,
for @ near /4 : the relative salience of the bars and edges fluctuated over time. The
instability can be made more pronounced when the high spatial frequencies of the
pattern are attenuated. Figure 6, plate 2, shows a waveform of squarewave
amplitude and constant phase ¢ = m/4, filtered with a low-pass Gaussian filter of
standard deviation 2 (equation 8).

The Gaussian attenuates heavily the amplitude of all higher harmonics: the
third harmonic by a factor of 0.36 (relative to the fundamental), the fifth by a
factor of 0.05 and the seventh by a factor of 0.0025. The resultant waveform is
similar to that created by Atkinson & Campbell (1974), who added only the first
and third harmonics of a squarewave in various phases.

Readers can verify for themselves the perceptual instablity of figure 6. After a
short period of viewing, its appearance begins to alternate rapidly between a
‘squarewave’ and a ‘trianglewave’ appearance, which can be more accurately
described as a series of lines of alternating polarity. This perceptual alternation
was described as ‘monocular rivalry’ by Atkinson & Campbell (1974).

Observers were asked to indicate the position of the centre (white) line when the
pattern appeared as lines, and the centre edge when it appeared as an edge, by
adjusting the position of a small superimposed spot. They were asked to wait until
the apparent configuration was clearly one of lines or edges before making their
judgement. Two observers participated in the task, and made ten measurements
under each condition. The average settings of the two observers are indicated
under the photograph of figure 6 (see also figure 7). The apparent position of the
line and edge were remarkably similar, differing by about 0.0076 7' (where 7' is the
period).

Several models of edge detection predict edges to occur at the points of maximal
change of luminance (peaks in the first derivative, or zero-crossings in the second :
see, for example, Marr & Hildreth (1980)). Lines should occur at the peak of the
luminance profile, or possibly at the centroid of luminance mass above mean
luminance (Watt & Morgan 1985). The positions of the maximal slope, and of the
peaks and centroid of the luminance profiles, are indicated in figure 6. The average
setting for the edge was 0.057 from the point of maximal slope. The average
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F16URE 7. Average settings for two observers, DCB and MCM, for the apparent position of lines
and edges in waveforms giving rise to monocular rivalry. All waveforms were low-pass
filtered with the Gaussian of equation (8) with o = 2 cycles per period. The phase spectra
of the waveforms varied from /2 to 0 (abscissa). Two cycles of waveform were displayed
at spatial frequency 1 cycle deg™ and contrast 0.01. Also shown are the positions of the
peaks in luminance (upper curve), peak in energy profile (dashed line) and peak in luminance
slope (lower curve). The apparent positions of lines and edges follow quite closely the
position of the peak in local energy.

setting for the line was 0.07 7 from the luminance peak and 0.127' from the
centroid. However, the peak in the energy profile (lower profile of figure 6) occurred
0.0021 7' from the perceived edge, and 0.0055 7' from the perceived line. That is to
say, the local energy profile predicted the position of perceived lines and edges
with considerable accuracy, whereas predictions of other models failed.

The apparent positions of lines and edges were then measured as a function of
phase ¢. As Atkinson and Campbell observed, rivalry is strongest and most rapid
at phases around 45°, but most phases (other than those near 90°) produced some
rivalry. Figure 7 shows the results for seven different phases for two observers. The
apparent positions of the lines and edges was fairly constant under all conditions,
and close to the peak in the local energy function (indicated by the dashed lines).
There was a slight tendency for lines to appear to the right of edges, but the
difference was seldom more than 0.01 7'. Both lines and edges were seen near the
peak in the local energy profile. Also shown on the graphs are the peaks and points
of maximal slope of the waveforms. Neither of these is an adequate predictor of
the perceived position of features.

Demonstration 2

The purpose of this demonstration was to investigate the effect of manipulating
the amplitude spectra of waveforms. The phase spectra of the waveforms used
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here were identical to those of demonstration 1, but the amplitudes of all har-
monics were equal (discounting the smoothing Gaussian). The amplitude spectrum
is that of a series of delta functions, rather than of a squarewave. The general
equation for the waveforms is

fle) = L,+2a/n 3, G(k)cos 2rkx/T — @), (11)
k=1
where the sum is over odd values of k. The other symbols are as in equation
(10).

Figure 8, plate 3, reproduces patterns for ¢ = 1/2, n/3, n/4 and 0 (90°, 60°, 45°
and 0°), at about 10% contrast, together with their luminance profiles. As with
the previous demonstration, observers reported three major features for each
pattern, all in the same position. In figure 8a the features were largely edges
(particularly at low contrast), in figure 84 lines, and the other figures gave some
impression of both lines and edges (with lines dominating). As with demonstration
1, some observers reported a sensation of depth.

Figure 8a (¢ = m/2) is an interesting case. It appears to be a squarewave with
alternately light and dark panels, particularly at low contrasts. However, as the
luminance profile shows, the apparent panels are of almost equal luminance,
except at the borders. Indeed the waveform, which can be considered to be a high-
pass version of a squarewave, is similar in shape to that which creates the well
known Craik—O’Brien—Cornsweet illusion (Craik 1940; O’Brien 1958; Cornsweet
1970), most powerful at low contrasts (Burr 1987).

The observations with this pattern suggest that the amplitude spectrum is not
crucial. The general impression of these patterns is very similar to that of the
patterns of figure 4, even though the amplitude spectrum (and hence the luminance
profiles) were very different.

Simulation

Figure 9 shows the local energy functions, and summed even and odd responses
for the waveforms of figure 8. The local energy functions are very similar to those
of figure 5, as are the phase spectra (and hence the points of congruence of arrival
phase) are the same. The only difference is that the high spatial frequencies are
emphasized, so the smaller receptive fields make a greater contribution. Similarly,
the response of odd and even fields at the maxima of the local energy functions is
like that of figure 5.

It is interesting that the high responses of odd-symmetric receptive fields of
figure 9a give rise to the perception of an edge, and of a brightness change, even
though there is no accompanying change in luminance. This suggests that the
signal for an edge is also the signal for a brightness change (even if it is not
accompanied by a corresponding change in luminance), and may be the expla-
nation for the Craik—O’Brien illusion (see Burr 1987).

Demonstration 3

The previous two demonstrations showed the effect of adding a constant to the
phase spectrum of a waveform, leaving the spectrum flat. In this demonstration

10 Vol. 235. B
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FicUure 9. Local energy profiles of the waveforms of figure 8, summed over all scales, together
with the summed response of even-symmetric detectors and odd-symmetric detectors.
Again, the local energy is identical for all waveforms, and peaks at the visually salient
feature. A clear edge is seen in figure 8a, although it is not accompanied by a luminance
change, except near the borders.

the phases of all harmonics are perturbed randomly by varying degrees. The
general formula for the waveforms is

f(x) = L,+4a/n X Q(k)/kcos [2nkx/T —n/2—yr(k)] (12)
k=1

where r(k) varies randomly over the range —0.5-0.5, with (1) = 0 (leaving the
phase of the fundamental unaltered). The average phase for all the higher har-
monics is T/2, varying randomly over a range ¥. The amount of variation will
depend on the particular draw of random numbers on that occasion. Several
waveforms were generated with independent random number sequences. Those
reproduced in figure 10, plate 4, are fairly typical samples.

In figure 10 the value of ¥ (range of perturbation of the phase spectrum) was
n/4,1/2, and 21 (45°, 90°, 180° and 360°). Observers all reported that the general
impression of all patterns except figure 10d was of a squarewave, with varying
amounts of added noise. Figure 10d appeared like random noise.
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(@) | (b) I

F1GURE 11. Profiles of the waveforms of figure 10, together with local energy profiles at each of
the four scales. For all waveforms except (d), there are strong peaks at the centre and
extremities of the energy functions at all scales, indicating the edge of the parent waveform.
Other peaks introduced by phase perturbations do not necessarily match at all scales, but
most correspond to perceived features in the patterns.

Simulation

Figure 11 shows the local energy profiles for each of the waveforms at each of
the four separate scales. For the first three patterns, there are two strong peaks in
energy at all scales, corresponding to the perceived edge in the patterns. Increasing
the randomness factor, i, progressively decreased the amplitude of the central
energy peak, and introduced additional peaks. However, even with 180° of
random perturbation, the major peak occurred at the centre of the pattern. With
360° of perturbation (total randomness) the peak at this position disappeared
completely.

The effect of phase randomization on the local energy profile can be understood
by considering the relation between local energy amplitude and similarity of
arrival phase (illustrated in figure 1). When the phase spectrum is not constant but
partly randomized, it is improbable that all harmonics will have identical arrival
phases at any point on the waveform. As the mean of the perturbation is zero,
arrival phases will (on average) be most similar where x = 0 or x = 7'/2, but as the
arrival phases are not identical, local energy at these points will be less than for

10-2
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the constant phase condition. The randomness will also cause chance similarity of
harmonic arrival phases, causing additional local peaks at random intervals, often
at different positions for different scales.

Even with 180° of randomization (half the maximum possible range), the ori-
ginal peak of local energy is not totally destroyed. This could explain why images
can be recognized after severe quantization of their Fourier phase spectrum
(Piotrowski & Campbell 1982). Quantization introduces a perturbation of the
phase spectrum ; not strictly random, but similar to that described here.

The additional features introduced into the patterns by the phase perturbation
correspond reasonably well to the peaks in the energy profiles, although the peaks
did not always appear at all scales. The reader can compare the energy profiles of
figure 11 with the photographs of figure 10 to see that most of the salient features
introduced by the perturbation correspond to peaks of local energy, usually that
of the higher scale. If the pattern is blurred, or viewed from a large distance, the
features tend to follow more the peaks of the lower scales.

Demonstration 4

Features of images can often be brought out more clearly in two dimensions.
Figure 12, plate 4, is a two-dimensional waveform designed to demonstrate how
congruence of arrival phase, and hence peaks in local energy, dictate the position
of visually important features, which in turn organize the perceptual appearance
of the pattern. Its luminance profile f(z, y) is given by

flx,y) = L,+4a/n %E G(k)/k cos{2nkx/T+2n[(|y|/2T—1/2)+k(1/8—|y]/4T)]}

k=1
for k as an odd integer and —T' <y <T. i

Close to, the pattern appears as a chevron pointing left. However, this per-
ceptual organization is actually contrary to that given by the average luminance
distribution. To verify this, view the pattern from a large distance (or screw up
your eyes): the chevron appears to point right.

The model proposed here has so far been developed only for one-dimensional
patterns. However, some idea of how the model performs can be gained by
considering the pattern row by row. For each row the arrival phases of all
harmonics are identical at eight points. The points where the harmonics come into
phase shift systematically rightward from the middle row outwards, because of
the group phase advance (given by the term k(—|y|/4T)). The peaks of local
energy will follow the points of phase congruence, and dictate the perceptual
organization of the pattern. The term |y|/ 2T —1 changes the value of the arrival
phase (or argument) at these points, but as local energy is independent of the
argument value, this does not affect the organization of energy peaks. It does,
however, affect the luminance distribution. When the pattern is blurred or viewed
from a distance, the higher harmonics are unresolvable, so the peaks in local
energy become shallow or disappear entirely. When this occurs, the orientation is
dictated by the average luminance, which creates a chevron pointing in the other
direction. A similar effect has been observed with filtered checkerboards (Burr
et al. 1986).
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We are currently developing a two-dimensional extension of this model, and
preliminary measurements suggest the changes in apparent tilt with viewing
distance can be well predicted quantitatively (Burr & Morrone 1988 ; Morrone &
Burr 1988).

Discussion

This study had two goals: to examine whether points on an image that have
unique perceptual appearance of edges and lines are always the points where the
Fourier components come into phase ; and to devise a biologically plausible model
of edge and line detection in one-dimensional images, based on this concept.

For all the stimuli of this study, the position of visually salient features cor-
responded to the points of the image where the arrival phases (argument) of
Fourier components were identical or most similar. This is most clearly demon-
strated in figure 12, where the apparent organization of the figure follows the
points where the Fourier components of each row of the luminance profile come
into phase; yet the average luminance gradient points in the other direction
(verified by blurring the pattern). Experiment 1 provided quantitative proof. For
a stimulus that alternated in appearance over time, changing from line to edge, the
apparent position of the feature remained constant. The feature always seemed to
be at the point of the waveform where the Fourier components had identical
arrival phase. This point did not correspond to maxima of the luminance distri-
bution or of its derivative, or any other part of the waveform corresponding to
predictions of current models.

Although phase may be a useful definition of visual features, this does not imply
that the visual system must calculate the Fourier transform, either locally or
globally. Points where the Fourier components come into phase can be readily
detected by calculating the local energy of the input waveform (using operators
similar to those known to exist in the visual system) and searching for peaks. As
proved in the Model section, peaks in local energy occur where the arrival phases
of Fourier components are most similar.

The local energy model requires a basis of at least two operators, preferably
orthogonal. Our implementation uses detectors with even- and odd-symmetric
receptive fields, whose output is related via the Hilbert transform. We choose
these filters partly on the basis of the existing (but scanty) psychophysical evi-
dence, and partly to simplify the presentation of the model. Any orthogonal pair
of filters of equal amplitude spectrum would do equally well. However, it is
important to understand that the operation cannot be achieved with only one
operator (by introducing, for example, a spatial displacement). Local energy is the
vector length in a two-dimensional space, and cannot be calculated from infor-
mation about only one dimension.

An intuitive understanding of local energy in the spatial domain is difficult. For
simple patterns, such as isolated lines and edges, peaks in local energy correspond
to peaks and zero-crossings of the image and its Hilbert transform. At these points
the stimuli are locally symmetric. However, for complex patterns such as Mach
bands and combinations of lines and edges (such as the demonstrations of this
study), there are no such obvious parallels. The patterns with constant phase
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spectra other than 0° or 90° (which can occur naturally, in conditions of oblique
lighting) are not symmetric about the peaks of local energy (at any scale), and
neither the even- nor odd-symmetric fields have maximal or zero response. For
this reason, we assert that coincidence of arrival phase of Fourier components is
a useful and valid definition of image features.

Some readers may be surprised that an energy model should be phase sensitive.
In their recent model of motion perception, Adelson & Bergen (1985) suggested a
similar operator for motion detectors, because it provides a ‘phase-independent’
output. Klein & Levi (1985) also use local energy (which they term the ‘pythago-
rean sum’) ‘to preserve full information about the magnitude of stimulation,
while discarding phase information’ (page 1179). For pure harmonic signals (sine
waves) the transformation is indeed phase independent, as sin?®(x)+ cos? (x) = 1:
the energy profile will be flat. For complex stimuli, however, the local energy
profile depends critically on the relations between the phases of the various
harmonics.

The role of spatial phase

The present results help reconcile some seemingly paradoxical observations of
visual phase perception : on the one hand, the phase spectrum contains most of the
image-related information of natural images (see, for example, Openheim & Lim
1981 ; Piotrowski & Campbell 1982); on the other hand, phase discrimination is
poor (Burr 1980; Badcock 1984a, b), ‘phase perception’ unstable (Atkinson &
Campbell 1974) and phase can survive severe quantization (Piotrowski & Campbell
1982). The Fourier phase spectrum is crucial (more so than the amplitude spec-
trum) because the phase spectrum determines the points where the arrival phases
of harmonics will be coincident (or most similar), and hence the position and
nature of visually salient features. However, there is considerable room for
random perturbations (of the type introduced by quantization) before the group-
ing of arrival phases congruency is completely destroyed.

Demonstration 2 showed that amplitude information was less important than
phase for perception. Provided that the arrival phases of all the harmonics were
all aligned at 90° (sine) phase, the impression was of a squarewave, with alternately
bright and dark bars (even though they had the same luminance).

The model can readily accommodate the visual instability produced by certain
phase relationships (monocular rivalry). Strongest and most rapid rivalry occurs
when the arrival phases of all harmonics are around 45° (Atkinson & Campbell
1974). At this point, both odd- and even-symmetric detectors respond strongly.
Should there be random variations in the relative strength of response over time,
one would expect the impression of edge and line to fluctuate over time. Some
support for this idea is given by the fact that monocular rivalry is strongest at low
contrasts, and with low-pass filtered images (to which few detectors respond),
where the random fluctuations should be greatest.

Under conditions of monocular rivalry, the model successfully predicted the
apparent positions of the features. Although the nature of the feature fluctuated
over time, changing from bar to edge, its position remained constant. Both features
were seen where the Fourier components came into phase, where local energy was
maximal.
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Alternative models

Most models of feature analysis rely heavily on linear filter operators. For
example, the seminal model of Marr and his colleagues (Marr & Hildreth 1980;
Marr 1982) employs the Laplacian-of-Gaussian operator to filter the image at
different scales. Coincidence of zero-crossings across scales provides the basis for
a schematic description of the image (the ‘primal sketch ).

For simple edges, such as those of figure 3a, coincidence of Zero-crossings occurs
at the edges. For lines (such as figure 3d), there is no coincidence in Zero-crossings,
so no edges are marked. Thus the model cannot detect lines, even though they are
salient visual features. The model encounters greatest difficulties with features
that are combinations of edges and lines, such as those with constant phase of 45°
(figure 3b). Again, zero-crossings do not coincide across scales, but edges are seen
by observers. This limitation is most evident with the low-pass filtered waveforms
of experiment 1. There the zero-crossings (at all scales) occur at the points of
maximal slope (where the second derivative crosses zero); but edges were not
perceived at that point. Furthermore, neither the original Marr & Hildreth (1980)
model nor subsequent developments (see, for example, Yuille & Poggio 1985)
predicts the perceptual alternations between lines and edges. In another publi-
cation, we have demonstrated that zero-crossings do not predict Mach bands,
whereas our model does so with precision (Ross et al. 1988).

Other, more recent, models proceed along similar lines to that of Marr. For
example, Watt & Morgan’s (1985) ‘MIRAGE’ filters the image at various scales,
half-wave rectifies at each scale, then searches for the centroid of each zero-
bounded response after summing separately all positive and negative responses.
With simple patterns such as squarewaves, the approach is reasonably successful.
However, it fails with the waveform of experiment 1. After filtering, half-wave
rectification and summing across scales, the resultant output is similar to a full-
wave rectified version of the original. According to Watt and Morgan’s rules of
interpretation, the visual system should see a series of wide bars (squarewave)
centred at the centroid of each zero-bounded mass and extending to the point
where the waveform crosses mean luminance. Edges should appear at the mean-
luminance cross (which is also the point of maximal slope), and bars at the
centroids. These predictions are not borne out by the data.

Another difficulty for both the above models is that the spatial filters introduce
ripples, more or less pronounced depending on the bandwidth of the filter. The
ripples cause spurious peaks or zero-crossings, which can lead to marking features
where there are none. To discard the spurious signals, both models require ‘rules’
for interpreting the output. Marr searches for coincidence in ZEro-Ccrossings across
scales, which eliminates the ripples (as they occur at different points at different
scales), but also eliminates many real features, such as lines. Watt and Morgan
evaluate the response sequence after filtering and rectification, and discriminate
between edges, lines and ripples primarily on the basis of the symmetry of the
output. Again, the approach has only limited success, particularly if two features
are nearby (or superimposed). For our model, neither approach is necessary. For
most stimuli, the local energy function is smooth. The ripples introduced by the
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filters are automatically eliminated when the outputs of the complementary filters
are combined. Thus the problem of spurious peaks or zero-crossings, and the need
to devise arbitrary cognitive rules (which may be difficult to implement rapidly
and effortlessly with biological hardware) do not arise.

There is also no need for cognitive rules to distinguish edges from lines. That
information is contained in the linear stage of the model. If at the point of local
energy maxima there is a response from odd-symmetric receptive fields, an edge
is seen. If even-symmetric receptive fields respond there, a line is seen. If both
respond, both edges and lines are seen (alternating in relative strength under some
conditions).

Role of spatial filters

Our model commences with four linear filters, of approximately 1.5 octave
bandwidth (chosen because of the experimental evidence for these filters in human
and animal vision). However, the particular bandwidths and shape of the filters
are not crucial for the model: nor indeed does the model require multiple filters.
We have shown elsewhere that a single pair of matched filters of broad bandwidth
can detect and locate image features in natural images, and may be a useful tool
for artificial visual systems, where computational speed is important (Morrone &
Owens 1987).

With the proposed model, spatial filtering of the image into narrow bands is not
the crucial operation for feature detection (cf. Pollen et al. 1971 ; Marr & Hildreth
1982 ; Robson 1980). The primary function of the filters is to create two functions
of identical amplitude spectrum, differing in phase spectra by 90° (Hilbert
transforms of each other). Small variations in either the amplitude or the phase
response can lead to distortions in the energy profiles, giving rise to false peaks.
Variations in both the amplitude and the phase response can be minimized by
restricting the bandwidth of the filters. Indeed, most broad-band electronic phases
filters are ‘multipole’, comprising many narrow band filters.

Apart from providing robust filters of constant phase, the limited bandwidth of
visual detectors probably serves various other functions, including reduction of
image noise (see, for example, Georgeson & Sullivan 1975 ; Sakitt & Barlow 1982;
Watt & Morgan 198s), increased encoding and transmission efficiency (see, for
example, Burt & Adelson 1983), and possibly providing the visual system with a
convenient mechanism for adjusting its resolution to the prevailing noise levels,
which vary dramatically with luminance (Ross & Campbell 1978).

At present there is little evidence to suggest how the output at various scales
may be combined. For this study, we assumed that energy is calculated at each
scale, and that the local maxima at each scale all signal a feature. This process
predicted reasonably well all the features of the complex waveforms of figure 10,
where there was not always correspondence across scales. However, further
experimentation is in progress to determine the rules of combining information
from the filters of various frequency preferences in situations where they do not
correspond across scales.

Another obvious limitation of the model in its present form is that it applies
only to one-dimensional stimuli. In extending the model to two dimensions there
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is a major restriction: the Hilbert transform is a one-dimensional transform.
To generate two-dimensional filters in quadrature phase it is necessary to introduce
an orientation bias in the filters. For two-dimensional images local energy must be
computed separately for several different orientations, and the output combined
in some way. This is not an unreasonable limitation, as the major property of
cortical neurones is their orientation selectivity (Hubel & Wiesel 1962, 1977). A
preliminary report of the two-dimensional extension to the model shows how local
energy calculated from oriented matched filters can detect and locate features in
two-dimensional images with reasonable accuracy (Burr & Morrone 1988 ; Morrone
& Burr 1988).

Physiological mechanisms

There exist two classes of cells in the visual system: quasi-linear cells, such as
X-retinal and -geniculate cells and simple cortical cells, and inherently nonlinear
cells, such as Y-retinal and -geniculate cells and complex cortical cells. The role of
the two classes of cells has been the subject of much speculation, but is still unclear
(for review see Lennie (1980)).

Both linear and nonlinear operations are essential for our model. The linear
operation requires pairs of filters, matched in amplitude response and differing in
phase response. The receptive fields of these filters resemble closely those described
by Hubel & Wiesel (1962, 1977), and subsequent research (see, for example, Maffei
et al. 1979; Kulikowski & Bishop 1983). The phase response of adjacent simple
cells tends to differ by 90° (Pollen & Ronner 1981), making them ideal candidates.
Field & Tolhurst (1986) suggest that the phase preference of simple cells may not
group around 0° and 90°, but vary over the entire range with equal frequency.
This finding, if confirmed, would not change significantly the model presented. To
extract energy, any pair of filters of the same orientation preference and in
quadrature phase will suffice (see, for example, Gabor 1946).

The nonlinear stage of the model involves squaring (a second-order nonlinearity)
and summing the output of the matched filters. Complex cortical cells are ideal
candidates for this task. They modulate to the second harmonic (and other even
harmonics) to counter-phased gratings (Movshon et al. 1979b; Spitzer & Hochstein
1985) indicating a second-order nonlinearity, and their response to drifting
sinusoidal gratings is uniform, reflecting the uniform energy in sine-wave gratings.
To test this idea, we intend to measure the spike activity of complex cells in
response to trapezoids, and waveforms such as those used in this study.

If this line of approach proves successful, it would suggest separate roles for the
linear and nonlinear neural elements. The nonlinear cells are responsible for the
detection and location of features (by calculating energy) and the linear cells for
the identification of features (lines or edges).

We thank John Ross, Horace Barlow and John Robson for discussions and
comments on the manuscript. M.C.M. was on leave from the Scuola Normale
Superiore, Pisa, Italy, and received a Queen Elizabeth II Fellowship from the
Australian Department of Science. D.B. is an NH and MRC Senior Research
Fellow.
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