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Symmetry detection is important for many biological visual systems, including those of mammals, insects
and birds. We constructed a symmetry-detection algorithm with two stages: location of the visually salient
features of the image, then evaluating the symmetry of these features over a long range, by means of a
simple Gaussian filter. The algorithm detects the axis of maximum symmetry for human faces (or any
arbitrary image) and calculates the magnitude of the asymmetry. We have evaluated the algorithm on the
dataset of Rhodes et al. (1998 Psychonom. Bull. Rev. 5, 659–669) and found that the algorithm is able to
discriminate small variations of symmetry created by computer-manipulating the symmetry levels in indi-
vidual faces, and that the values measured by the algorithm correlate well with human psycho-physical
symmetry ratings.
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1. INTRODUCTION

Human observers are very sensitive to bilateral symmetry
in visual patterns (reviewed by Baylis & Driver 1995;
Tyler 1996; Wagemans 1997). Rapid detection of sym-
metry may facilitate early visual processes, such as figure–
ground segmentation (Koffka 1935; Rock 1983; Driver et
al. 1992) and contribute to later processes, such as recog-
nition of objects from novel viewpoints (Vetter et al. 1994;
Kovacs et al. 1998). In addition to detecting perfect sym-
metry, we can also discriminate subtle deviations from
perfect symmetry (Wagemans 1997). This ability may
help direct our attention to interesting and potentially
important objects in our immediate environment, such as
when we follow the direction of another person’s averted
(asymmetric) gaze (Vecera & Johnson 1995; Driver et al.
1999).

The ability to detect symmetry and to discriminate sub-
tle deviations from perfect symmetry may also play a part
in biologically significant decisions, such as mate selec-
tion. Like many animals, humans find symmetry attractive
in potential mates (Møller & Swaddle 1997; Thornhill &
Gangestad 1999). Attractiveness and mate appeal ratings
increase with facial symmetry, and these ratings are gener-
ally highest when facial asymmetries are eliminated altog-
ether (Rhodes et al. 1998; Perrett et al. 1999). Studies
that have failed to find that perfectly symmetric faces are
attractive have either used flawed methods of creating
symmetric faces (e.g. Kowner 1996) or have failed to con-
trol for expression (Swaddle & Cuthill (1995) and see
Little et al. (2002) for a recent review). Nor does the
appeal of symmetry appear to be due to correlations with
other attractive traits, such as averageness (Rhodes et al.
1999) or sexual dimorphism (Penton-Voak et al. 2001).
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Finally, we note that some authors have questioned the
appeal of symmetry, because attractiveness correlates with
symmetry even when only hemifaces are shown (Scheib et
al. 1999; Penton-Voak et al. 2001). However, this concern
assumes that hemifaces do not contain cues to symmetry,
which is not true. For example, the amount of nose and
mouth visible in a hemiface indicates whether those fea-
tures are symmetrically (centrally) located.

Individuals with symmetric bodies are also more suc-
cessful in attracting mates than their asymmetric peers
(see Thornhill & Gangestad 1994). The functional signifi-
cance of this preference for symmetric mates is contro-
versial. It may help identify high-quality mates, because
symmetry signals developmental stability and health
(Møller & Swaddle 1997), or it may be a by-product of
simple information processing mechanisms, such as gen-
eralization gradients (Enquist & Johnstone 1997). Either
way, our ability to make subtle discriminations between
different levels of symmetry in faces can influence
important life decisions.

The biological importance of symmetry, the possible
contribution of symmetry detection to early visual pro-
cesses like figure–ground segmentation and the fact that
many biological visual systems, including those of insects
and birds, are sensitive to symmetry (Lehrer et al. 1994;
Swaddle & Cuthill 1994a,b; Moller 1995) suggest that
there may be specialized symmetry-detection mechanisms
in mammalian visual systems.

Given that symmetry detection is an important aspect
of human and animal vision, it seems likely that visual
systems have evolved to detect symmetry efficiently. Here,
we propose a quantitative two-stage model of symmetry
detection and test the model against human performance
in symmetry rating of faces. We have adapted the ‘local
energy’ model of feature detection (Morrone & Burr
1988) to localize the vertical symmetry axis of a human
face (or any other object) and estimate the amount of
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Figure 1. Illustration of the algorithm for detecting symmetry in a human face (upper figures) and an artificial pattern
produced by symmetrically reflecting a random noise pattern about the vertical axis. (a) This shows the original stimuli. The
local energy profile (b) is extracted, following the details given in § 2 (equations (2.1)–(2.5)). This energy profile is then
convolved with a Gaussian filter (equation (2.6)) to produce (c), from which the positions of local maxima are determined row
by row to locate the symmetry axis (d). The asymmetry value assigned to the image is given by the weighted standard
deviation of the maxima position divided by the normalization factor r.

deviation from perfect symmetry. The model was orig-
inally introduced to detect salient features in an image,
such as edges, lines or combinations of the two
(Morrone & Burr 1988; Burr & Morrone 1990). These
features are revealed as local maxima of the ‘energy
function’ of the two-dimensional (2D) image. In this
application the model is used to highlight features for sub-
sequent evaluation of symmetry by a second-stage filter.

2. METHODS: ALGORITHM

The algorithm operates in two stages. The first stage calcu-
lates a 2D local energy function that defines a sketch of the
image, where visual features assume a positive value pro-
portional to their salience. The second stage evaluates the sym-
metry of this energy sketch by convolving it with a broad
Gaussian filter, and then localizing the local maxima. The pro-
cess is illustrated in figure 1, both for a human face and an arti-
ficial image made up from random noise.

The local energy of an image E(x) is obtained by first convolv-
ing the image with operators of even symmetry and odd sym-
metry, then combining these two outputs (Oe and Oo) by
Pythagorean sum to produce an all-positive image with maxima
at salient features:

E(x) = Î Oe(x)2 1 Oo(x)2 , (2.1)

where Oe and Oo are obtained by convolving the original image
with even- and odd-symmetric filters Ge and Go:

Oe(x) = EGe(x 2 j)I(j)dj , (2.2)

Oo(x) = EGo(x 2 j)I(j)dj .

The two filters Ge and Go have the same amplitude spectrum
but are in quadrature phase (so that they are orthogonal in L2

space). The phase is chosen so they have an even and odd sym-
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metry about a given preferred orientation u. Their amplitude
spectrum follows a Gaussian function of log spatial frequency,
approximating the spatial frequency tuning functions of
human vision:

a(u,w) = exp(2ln2(|u|/p)/2s2u)exp(2w2/2s2w), (2.3)

where w is the direction orthogonal to u, and p, su and sw are
suitably defined constants. The function is a parabola along u
on a log–log plot with a peak corresponding to p and a half band-
width corresponding to su log units at half-height.

As a consequence of the orthogonality of Oe and Oo, salient
features in the image are identified with the ‘local maxima’ of
the energy function E(x) associated with various pairs of filters
having different symmetry orientations and spatial scales. The
local maxima may be detected along the direction of steepest
gradient of the energy function. The nature of the feature (edge,
line or a combination of both) is given by the argument A(x):

A(x) = arctan(Oe(x)/Oo(x)). (2.4)

For lines the argument is near 0, for edges p /2.
The first stage of the symmetry algorithm is to calculate the

local energy profiles Ev(x), Eh(x) of the image with respect to
two orientations (vertical and horizontal) and one spatial scale,
defined by p = 32 cycles per picture, su = 1 log unit, sw = 16
cycles per picture (see equation (2.3) above). This scale may be
considered to be the most relevant for face discrimination as p
corresponds to a peak frequency of 10.3 cycles per face unit,
near the most efficient range (Fiorentini et al. 1983; Hayes et al.
1986). su is the full-bandwidth at half height of 3.4 octaves and
sw the orientation full-bandwidth at half height of 98°. In pre-
vious implementations of the model we have used four different
spatial scales and four different orientations (Burr & Morrone
1990). However, as it has been shown that the energy model
works acceptably well with a single broad spatial scale and two
broad orthogonal orientations (Morrone & Owens 1987), we use
this implementation here to limit the complexity of the algor-
ithm. A single representation of the image features is obtained
by simply summing the two orthogonal energy functions:
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Figure 2. Detection of non-vertical symmetry. (a) A random-dot pattern reflected about the 45° diagonal. (b) The energy map
of (a). (c) This shows the convolution with a vertical second-stage filter like that used in figure 1. (d) This shows the line-by-
line maxima of this output, clearly highly asymmetrical. (e) This shows the output of a second-stage filter applied to (b) of
appropriate orientation (45°), together with the maxima ( f ), forming a single line along the axis of symmetry. (g) This shows
the asymmetry measures as a function of mask orientation, for the narrow filters illustrated here and in figure 1 (sx /sy = 16,
continuous line) and for a broader filter (sx/sy = 1.6, dashed line). Both filter types show a clear minimum at the axis of
symmetry, easy for any algorithm to detect.

E = Eh(x) 1 Ev(x). (2.5)

This is illustrated in figure 1b for a human face (upper) and
random-dot symmetry (lower). To evaluate the symmetry of the
feature map the summed energy E is convolved with a vertically
oriented Gaussian filter spatially defined by

F = 1/4[exp(2x2/2s2x)exp(2y2/2s2y)], (2.6)

where sx = 120 pixels (or 0.73 face units) and sy = 7.5 pixels (or
0.046 face units). The output of this convolution for the two
images is shown in figure 1c.

Position and values of local maxima are next determined row
by row. Note that usually a row in E F has only one
maximum, but in cases where there are more the average pos-
ition and value is taken. This very rarely occurs for faces, but
could occur for random images (like those of figures 1 and 2)
where the point of symmetry could correspond to a local mini-
mum rather than maximum.

The maxima of the convolution determine the symmetry axis
of the original image (figure 1d). The asymmetry value of the
image is defined as the ratio s/r, where s is the weighted stan-
dard deviation (s.d.) of the maxima positions (expressed in
pixels) and r is a normalization factor defined by r2 = ab, a

being the distance between the pupils and b the vertical distance
from a horizontal line joining the pupils to the bottom tip of the
chin for faces and to the square root of the whole area for other
images. An efficient strategy to search for the optimal orientation
could be to use a few broad second-stage filters and then refine
the search with the narrowband filters.

The above algorithm does not assume the position of sym-
metry, but finds it by searching for maxima in the filtered out-
put. The only assumption is that the axis of symmetry is vertical.
However, this assumption is not an essential feature of the
model. If the axis of symmetry is not known, it is sufficient to
use several second-stage filters with different orientation tuning,
as illustrated in figure 2. Figure 2a is a random-dot pattern
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symmetric about the 45° diagonal, and figure 2b the associated
energy map. Figure 2c shows the result of convolution with a
vertical second-stage filter, yielding the maxima of figure 2d,
clearly yielding a high asymmetry estimate. However,
convolution with a second-stage filter of appropriate orientation
leads to very low asymmetry (figure 2e, f ). Figure 2g shows the
estimate of asymmetry as a function of the orientation of the
second-stage filter. For the filters used in this study (sx/sy = 16),
the function peaks sharply at 45° (solid curve). For broader fil-
ters the peak is more gradual (dashed lines illustrate a filter of
sx/sy = 1.6).

In this study, we will continue to make the simplifying
assumption that symmetry is around the vertical axis. However,
figure 2 shows that this is not an essential limitation of the
model, which could be readily extended to situations where the
symmetry axis was completely unknown.

3. RESULTS: EVALUATION OF ALGORITHM

We tested the algorithm on a set of the images randomly
selected from those used by Rhodes et al. (1998): 68
images comprising 17 faces with four different levels of
symmetry produced by a morphing technique. The orig-
inal digitized black-and-white photograph of a face is
referred to as the ‘normal’ version. A perfectly symmetri-
cal picture (‘perfect’ version) was created by averaging the
normal version with its vertical mirror reflection. A ‘high’
symmetry version was created by warping the original face
half way towards the ‘perfect’ symmetry face and a ‘low’
symmetry version was created by warping the original face
the same distance D in the other direction (see figure 3
and Rhodes et al. (1998) for more details).

The asymmetry values assigned by the algorithm for the
four symmetry versions of each face are shown in figure
4a. When the faces were perfectly symmetrical, the
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perfect high normal low

Figure 3. The four symmetry versions of a face as produced by suitable morphing techniques in Rhodes et al. (1998). The
first on the left (‘perfect version’) is perfectly symmetrical. From left to right, the amount of vertical symmetry decreases each
time by a fixed quantity D. The ‘low’ symmetry version is the most asymmetrical.
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Figure 4. (a) Model asymmetry values for the four symmetry versions of each of the 17 faces considered (each face is
represented by a different symbol). (b) Histogram of the correlation coefficients relating the model estimates to the physical
asymmetry of the four versions of each face. The Gaussian fit has a mean of 0.85 and s.d. s = 0.1.

algorithm gives very low asymmetry estimates, nearly 1%
of the overall face. The model estimate generally increases
monotonically with the physical asymmetry. Because each
symmetry version varies in symmetry space by a fixed
physical distance D from the next, it forms a metric scale,
and can therefore be correlated with the model estimates.
The correlation coefficients of model estimate against
symmetry level for each face are summarized in the histo-
gram of figure 4b. The correlations are generally good
(average r = 0.85), attesting to the validity of the algor-
ithm. Some violations of monotonicity can be seen
between levels one and two for the model estimates. Inter-
estingly, human observers also had difficulty discriminat-
ing these asymmetry levels (see Rhodes et al. 1998).

We next compared the estimates of symmetry from our
model with those of human raters (Rhodes et al. 1998),
where 64 individuals rated all faces and symmetry versions
both for symmetry and for attractiveness, within the range
1–10, where 10 corresponded respectively to perfect sym-
metry and best attractiveness. We transformed the sym-
metry and attractiveness ratings to mean ‘asymmetry’ and
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‘unattractiveness’ ratings by subtracting each value from
11. Figure 5a plots the mean asymmetry ratings against
model estimates for each face. Figure 5b plots the histo-
gram of all the correlation coefficients found for all faces.
As is evident from both graphs, the model correlates well
with the ratings (average r = 0.91) demonstrating a linear
relation between the model and human performance.

Finally, we plotted the ratings of unattractiveness
against the asymmetry estimates of the model (figure 6a),
together with the histograms of the correlations (figure
6b). Here the dependency was less strong, but the average
correlation was positive, r = 0.56.

4. DISCUSSION

We have presented a biologically plausible model of
symmetry detection that performs well on both artificial
and natural images and parallels human performance. The
model’s performance correlated well with physical
manipulations of the symmetry of a set of images of faces.
It also correlated well with human rating estimates of the
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Figure 5. (a) Psychophysical mean asymmetry ratings of the four symmetry versions of each face (data from Rhodes et al.
1998) versus the corresponding model asymmetry estimates (as in figure 4a). Each face is represented by a different symbol.
(b) Histogram of the correlation coefficients relating the model estimates of the four symmetry versions of each face versus the
corresponding psychophysical mean asymmetry ratings. The Gaussian fit has a mean of 0.91 and s.d. s = 0.08.
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Figure 6. (a) Psychophysical mean unattractiveness ratings of the four symmetry versions of each face (data from Rhodes et al.
1998) versus the corresponding model asymmetry estimates. Each face is represented by a different symbol. (b) Histogram of
the correlation coefficients relating the model estimates of the four symmetry versions of each face versus the corresponding
psychophysical mean unattractiveness ratings. The Gaussian fit has a mean of 0.56 and s.d. s = 0.45.
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symmetry of the same images, showing it can emulate
human performance with reasonable accuracy. The model
requires no complicated or unrealistic biological machin-
ery. The first stage of local energy calculation, discussed
in detail elsewhere (Morrone & Burr 1988), is achieved
by mechanisms resembling complex cortical cells. The
additional Gaussian smoothing and the peak detection
operation are both operations easily achieved by visual
neural populations, particularly those of higher stages with
large receptive fields.

The algorithm was designed for use with human faces,
but it generalizes well to other images, such as random-
dot images. We chose the random-dot patterns of figures
1 and 2 because they are a severe test of the model, being
the most ‘artificial’ stimulus we could devise. The noise
was completely uncorrelated (apart from the mirror
reflection), producing no clear features in the energy map
of figure 1b. But, the model predicted perfect symmetry
for this perfectly symmetrical artificial stimulus.

In the current implementation of the model, we use only
one (vertical) orientation for the second-stage filter, both
to simplify the algorithm and to simulate the human
observers, who were asked to evaluate vertical symmetry.
However, we also illustrate a simple extension of the
model, by using a series of second-stage Gaussian filters
of various orientations. The orientation corresponding to
the axis of symmetry shows a clear minimum, easy to
identify. With this simple extension the model could both
identify and evaluate symmetry along any orientation.

Dakin & Watt (1994) showed that spatially unweighted
correlation models cannot explain human symmetry per-
ception. Symmetry detection necessarily involves compari-
son of detailed (high-frequency) features over relatively
large distances. A single linear filter large enough to
straddle the distance between the features will necessarily
blur out the image detail essential for symmetry (see also
Tyler et al. 1995). Dakin & Watt (1994) concluded that
filtering in combination with a feature alignment measure
is useful both as a way of extracting symmetry from natu-
ral images and as an explanation for psychophysical detec-
tion of bilateral symmetry.

In our model, the nonlinearity of the local energy pro-
cess serves this purpose by first transforming the image
into a positive function corresponding to visually salient
features. The second stage large-scale filter operates on
the feature map, rather than the high-frequency details
themselves, so low-pass filtering does not obliterate these
marked features.

In previous studies, it has been demonstrated that our
local energy model is reasonably robust in conditions of
unequal lighting and shading, in that it does not respond
to gradual changes in luminance, but only to features such
as lines and edges. This is a useful property for a model of
symmetry detection, as a gradient could distort symmetry
estimates. Oblique lighting can cast harsh shadows, and
these would certainly be a problem for our model,
although light shadows generating widely spaced Mach
bands should not be a problem for the present model
given that they are detected by the energy model only by
filters of very high spatial frequency preference (Ross et al.
1989). However, as the psychophysical measures of sym-
metry and attractiveness were made in conditions of fairly
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uniform lighting, we restricted our study to these images.
It may be an interesting extension to study what types of
shading affect the symmetry output of the model, and
whether this follows human performance, both of sym-
metry estimation and of beauty.

The idea of applying the local energy model to sym-
metry detection so that symmetry should be determined
by visual salient features rather than local variation of lum-
inance was first proposed by Osorio (1996). Osorio also
calculates the squared output of even and odd-symmetric
operators, but rather than evaluating local maxima, he
ranks the symmetry of each point at the local maxima of
the even output. Although this has the advantage of ensur-
ing that symmetry estimation is based on feature matching
rather than local luminance calculation, there are two
major drawbacks: the algorithm leads to many false posi-
tives, arising mainly from local symmetry of isolated fea-
tures; and odd-symmetric features, such as face edges, or
features of mixed symmetry (often resulting from oblique
illumination) do not contribute to the evaluation of sym-
metry.

Symmetry detection has been studied psychophysically
for many years (e.g. Julesz 1966), but little is known about
its neural basis. Tyler & Baseler (1998) have used func-
tional magnetic resonance imaging to identify areas in the
human brain sensitive to symmetry, contrasting blood
oxygenated level-dependent (BOLD) signals generated by
symmetric and random patterns. In their study, early reti-
notopic visual areas (V1, V2, V3, V3a V4v, V5) showed
very little differential response to symmetric versus ran-
dom patterns. Pronounced BOLD signals were, however,
found in the middle occipital gyrus. Activation was not
observed in the fusiform and lingual gyri, which are known
to respond to faces and objects rather than to non-object
textures (Kanwisher 2000). Norcia et al. (2002) have
recently shown that the visual evoked potential response to
symmetric/random sequences was indistinguishable from
that for random/random sequences up to ca. 220 ms, after
which the response to symmetric patterns became rela-
tively more negative. Symmetry in random-dot patterns
thus appears to be extracted after an initial response phase
that is indifferent to configuration.

Both these physiological results are consistent with the
hypothesis that the symmetry property is extracted by pro-
cessing in extrastriate cortex (Lee et al. 1998; Tyler &
Baseler 1998). Our second-stage Gaussian filter may be
modelling this higher neural process.

Interestingly, the model estimates of symmetry also cor-
related with estimates of attractiveness. This correlation
was not strong, and the variance accounted for was clearly
a small proportion of the total variance, but the same is
true for correlations between human judgements of sym-
metry and attractiveness. The present result is, therefore,
in keeping with evidence that although symmetry may
contribute towards attractiveness, it is not the only
determining factor (for a recent review see Rhodes &
Zebrowitz (2002)).

We have shown that a simple, biologically plausible
model of asymmetry estimation generates estimates that
closely match those of human observers. This model may
account for the widespread sensitivity to symmetry in a
wide range of mammalian visual systems.
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